Please use this identifier to cite or link to this item:
Title: Density-based separation of microparticles using magnetic levitation technology integrated on lensless holographic microscopy platform
Authors: Delikoyun, Kerem
Yaman, Sena
Tekin, Hüseyin Cumhur
Keywords: Density measurement
Lensless digital inline holographic microscopy
Magnetic levitation
Microparticle separation
Issue Date: 2019
Publisher: Institute of Electrical and Electronics Engineers Inc.
Abstract: Microparticle/cell separation is one of the most important applications in the field of biomedical sciences particularly for cell sorting and protein assays. There are variety of different separation technologies introduced in the literature that the main limitations are large amount of sample, expensive chemical use besides of requirement of a labeling procedure (i.e. fluorescent/magnetic labeling), complex machinery, and high operational costs. Magnetic levitation-based separation offers simple, rapid and precise separation of microparticles based on their densities by suspending them in a glass microcapillary between two opposing magnets. Traditionally, magnetic levitation-based microparticle separation and identification procedure is performed by imaging under bulky microscopes composed of fragile and expensive optics and require trained personnel to operate which makes the whole procedure costly, time consuming and prone to human error. Lensless digital inline holographic microscope (LDIHM) eliminates the need for sophisticated optics by replacing simple illumination and recording scheme that can be reduced into few widely-Available and cost-effective components. Thus, inspection procedure is mostly carried out on digitally processing captured holograms so that dependency on optical components and human error is dramatically reduced alongside using cost-effective and handheld device. Here, we introduce a novel hybrid platform that brings the advantages of magnetic levitation system with lensless digital inline holographic microscope for precise separation and identification of microparticles based on their densities. In the platform, it was shown that 1.026 g/mL and 1.090 g/mL microparticles were successfully identified. © 2019 IEEE.
Description: 2019 Innovations in Intelligent Systems and Applications Conference, ASYU 2019 -- 31 October 2019 through 2 November 2019
ISBN: 9781728128689
Appears in Collections:Bioengineering / Biyomühendislik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
Density-Based_Separation.pdf6.37 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Dec 2, 2023

Page view(s)

checked on Dec 4, 2023


checked on Dec 4, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.