Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8451
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarapınar, Güler-
dc.contributor.authorCMS Collaboration-
dc.date.accessioned2020-07-18T08:15:58Z-
dc.date.available2020-07-18T08:15:58Z-
dc.date.issued2020-
dc.identifier.issn1748-0221-
dc.identifier.urihttps://doi.org/10.1088/1748-0221/15/04/P04017-
dc.identifier.urihttps://hdl.handle.net/11147/8451-
dc.description.abstractDuring the high-luminosity phase of the LHC (HL-LHC), planned to start in 2027, the accelerator is expected to deliver an instantaneous peak luminosity of up to 7.5 x 10(34) cm(-2) s(-1). A total integrated luminosity of 3000 or even 4000 fb(-1) is foreseen to be delivered to the general purpose detectors ATLAS and CMS over a decade, thereby increasing the discovery potential of the LHC experiments significantly. The CMS detector will undergo a major upgrade for the HL-LHC, with entirely new tracking detectors consisting of an Outer Tracker and Inner Tracker. However, the new tracking system will be exposed to a significantly higher radiation than the current tracker, requiring new radiation-hard sensors. CMS initiated an extensive irradiation and measurement campaign starting in 2009 to systematically compare the properties of different silicon materials and design choices for the Outer Tracker sensors. Several test structures and sensors were designed and implemented on 18 different combinations of wafer materials, thicknesses, and production technologies. The devices were electrically characterized before and after irradiation with neutrons, and with protons of different energies, with fluences corresponding to those expected at different radii of the CMS Outer Tracker after 3000 fb(-1). The tests performed include studies with beta sources, lasers, and beam scans. This paper compares the performance of different options for the HL-LHC silicon sensors with a focus on silicon bulk material and thickness.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofJournal of Instrumentationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLarge detector systems for particle and astroparticle physicsen_US
dc.subjectParticle tracking detectors (Solid-state detectors)en_US
dc.subjectRadiation-hard detectorsen_US
dc.subjectSi microstrip and pad detectorsen_US
dc.titleExperimental study of different silicon sensor options for the upgrade of the CMS Outer Trackeren_US
dc.typeArticleen_US
dc.institutionauthorKarapınar, Güler-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume15en_US
dc.identifier.issue4en_US
dc.identifier.wosWOS:000534740000017en_US
dc.identifier.scopus2-s2.0-85089604213en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1088/1748-0221/15/04/P04017-
dc.relation.doi10.1088/1748-0221/15/04/P04017en_US
dc.coverage.doi10.1088/1748-0221/15/04/P04017en_US
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept01. Izmir Institute of Technology-
Appears in Collections:Rectorate / Rektörlük
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Apr 5, 2024

Page view(s)

118
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.