Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/8823
Title: | Phasor represented EMG feature extraction against varying contraction level of prosthetic control | Authors: | Onay, Fatih Mert, Ahmet |
Keywords: | Electromyography Pattern recognition Prosthetic hand control Myoelectric control Transradial amputees |
Publisher: | Elsevier | Abstract: | This paper introduces phasor representation of electromyography (EMG) feature extraction (PRE). The well-known EMG signal analysis methods, namely root mean square (RMS), and waveform length (WL) are adopted into phasor form depending electrode placement. The values of these methods are computed from 8-channel EMG signals, and their magnitudes with respect to origin are used to construct phasor represented features in this study. The class separability of the PRE is strengthened by adding difference EMG and Euclidean distanced phasor in order to obtain improved feature set against force and electrode variations. The simulations (three schemes) are performed on publicly available EMG dataset on transradial amputees, and the results are presented in terms of accuracy and processing time considering the control strategies of a prosthetic hand. Linear (LDA), and quadratic (QDA) discriminant analysis, and knearest neighbor (k-NN) classifiers are trained, and tested by the PRE features. Our method outperforms previous accuracy rates in some cases, and reaches to accuracy results of the first study using this dataset without using any reduction method. In our simulations, accuracy rates up to 71.17% (PRE with QDA) for six classes hand movements with three force levels are obtained decreasing processing time by 81.83%. (C) 2020 Elsevier Ltd. All rights reserved. | URI: | https://doi.org/10.1016/j.bspc.2020.101881 https://hdl.handle.net/11147/8823 |
ISSN: | 1746-8094 1746-8108 |
Appears in Collections: | Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S1746809420300379-main.pdf | 1.76 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
17
checked on Nov 29, 2024
WEB OF SCIENCETM
Citations
14
checked on Nov 9, 2024
Page view(s)
172
checked on Dec 2, 2024
Download(s)
154
checked on Dec 2, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.