Please use this identifier to cite or link to this item:
Title: Colloidal bimetallic nanorings for strong plasmon exciton coupling
Authors: Güvenç, Çetin Meriç
Mert Balcı, Fadime
Sarısözen, Sema
Polat, Nahit
Balcı, Sinan
Publisher: American Chemical Society
Abstract: Nobel-metal nanostructures strongly localize and manipulate light at nanoscale dimension by supporting surface plasmon polaritons. In fact, the optical properties of the nobel-metal nanostructures strongly depend on their morphology and composition. Until now, various metal nanostructures such as nanocubes, nanoprisms, nanorods, and recently hollow nanostructures have been demonstrated. In addition, the plasmonic field can be further enhanced at nanoparticle dimers and aggregates because of highly localized and intense optical fields, which is known as "plasmonic hot spots". However, colloidally synthesized and circular-shaped nanoring nanostructures with plasmonic hot spots are still lacking. We, herein, show for the first time that colloidal bimetallic nanorings with plasmonic nanocavities and tunable plasmon resonance wavelengths can be synthesized via colloidal synthesis and galvanic replacement reactions. In addition, in the strong coupling regime, plasmons in nanorings and excitons in J-aggregates interact strongly and nanoring-shaped colloidal plexcitonic nanoparticles are demonstrated. The results reveal that the optical properties of the nanoring and the onset of strong coupling can be tamed by the galvanic replacement reaction. Further, the plasmonic nanocavity in the nanorings has immense potential for applications in sensing and spectroscopy because of the space, enclosed by the plasmonic nanocavity, is empty and accessible to a variety of molecules, ions, and quantum dots.
ISSN: 1932-7447
Appears in Collections:Chemistry / Kimya
Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Photonics / Fotonik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
acs.jpcc.0c01011.pdf5.88 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Jul 19, 2024


checked on Jul 19, 2024

Page view(s)

checked on Jul 22, 2024


checked on Jul 22, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.