Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8872
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Rowanda-
dc.contributor.authorDalkılıç, Gökhan-
dc.contributor.authorErten, Yusuf-
dc.date.accessioned2020-07-18T08:34:04Z-
dc.date.available2020-07-18T08:34:04Z-
dc.date.issued2020-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2019.112947-
dc.identifier.urihttps://hdl.handle.net/11147/8872-
dc.description.abstractRecently as applications produce overwhelming data streams, the need for strategies to analyze and cluster streaming data becomes an urgent and a crucial research area for knowledge discovery. The main objective and the key aim of data stream clustering is to gain insights into incoming data. Recognizing all probable patterns in this boundless data which arrives at varying speeds and structure and evolves over time, is very important in this analysis process. The existing data stream clustering strategies so far, all suffer from different limitations, like the inability to find the arbitrary shaped clusters and handling outliers in addition to requiring some parameter information for data processing. For fast, accurate, efficient and effective handling for all these challenges, we proposed DGStream, a new online-offline grid and density-based stream clustering algorithm. We conducted many experiments and evaluated the performance of DGStream over different simulated databases and for different parameter settings where a wide variety of concept drifts, novelty, evolving data, number and size of clusters and outlier detection are considered. Our algorithm is suitable for applications where the interest lies in the most recent information like stock market, or if the analysis of existing information is required as well as cases where both the old and the recent information are all equally important. The experiments, over the synthetic and real datasets, show that our proposed algorithm outperforms the other algorithms in efficiency. (C) 2019 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectData streams architecturesen_US
dc.subjectData stream miningen_US
dc.subjectGrid-based clusteringen_US
dc.subjectDensity-based clusteringen_US
dc.subjectOnline clusteringen_US
dc.titleDGStream: High quality and efficiency stream clustering algorithmen_US
dc.typeArticleen_US
dc.institutionauthorAhmed, Rowanda-
dc.institutionauthorErten, Yusuf-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume141en_US
dc.identifier.wosWOS:000496334800028en_US
dc.identifier.scopus2-s2.0-85072608306en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.eswa.2019.112947-
dc.relation.doi10.1016/j.eswa.2019.112947en_US
dc.coverage.doi10.1016/j.eswa.2019.112947en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S0957417419306657-main.pdf2.25 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Nov 29, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 16, 2024

Page view(s)

232
checked on Dec 2, 2024

Download(s)

378
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.