Please use this identifier to cite or link to this item: `https://hdl.handle.net/11147/8920`
DC FieldValueLanguage
dc.contributor.authorÖzsarı, Türker-
dc.contributor.authorYolcu, Nermin-
dc.date.accessioned2020-07-18T08:34:08Z-
dc.date.available2020-07-18T08:34:08Z-
dc.date.issued2019-
dc.identifier.issn1534-0392-
dc.identifier.issn1553-5258-
dc.identifier.urihttps://doi.org/10.3934/cpaa.2019148-
dc.identifier.urihttps://hdl.handle.net/11147/8920-
dc.description.abstractWe study the local and global wellposedness of the initial-boundary value problem for the biharmonic Schrodinger equation on the half-line with inhomogeneous Dirichlet-Neumann boundary data. First, we obtain a representation formula for the solution of the linear nonhomogenenous problem by using the Fokas method (also known as the unified transform method). We use this representation formula to prove space and time estimates on the solutions of the linear model in fractional Sobolev spaces by using Fourier analysis. Secondly, we consider the nonlinear model with a power type nonlinearity and prove the local wellposedness by means of a classical contraction argument. We obtain Strichartz estimates to treat the low regularity case by using the oscillatory integral theory directly on the representation formula provided by the Fokas method. Global wellposedness of the defocusing model is established up to cubic nonlinearities by using the multiplier technique and proving hidden trace regularities.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.relation.ispartofCommunications on Pure and Applied Analysisen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSchrodinger equationen_US
dc.subjectBiharmonic Schrodinger equationen_US
dc.subjectFokas methoden_US
dc.subjectUnified transform methoden_US
dc.subjectLocal wellposednessen_US
dc.subjectSpace estimatesen_US
dc.subjectStrichartz estimatesen_US
dc.subjectInhomogeneous boundary dataen_US
dc.titleThe initial-boundary value problem for the biharmonic Schrödinger equation on the half-lineen_US
dc.typeArticleen_US
dc.authorid0000-0003-4240-5252-
dc.institutionauthorÖzsarı, Türker-
dc.institutionauthorYolcu, Nermin-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume18en_US
dc.identifier.issue6en_US
dc.identifier.startpage3285en_US
dc.identifier.endpage3316en_US
dc.identifier.wosWOS:000470782600020en_US
dc.identifier.scopus2-s2.0-85066327334en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.3934/cpaa.2019148-
dc.relation.doi10.3934/cpaa.2019148en_US
dc.coverage.doi10.3934/cpaa.2019148en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityttpTop10%en_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

CORE Recommender

#### SCOPUSTM Citations

31
checked on Feb 16, 2024

#### WEB OF SCIENCETM Citations

25
checked on Feb 17, 2024

#### Page view(s)

1,850
checked on Feb 19, 2024