Please use this identifier to cite or link to this item:
Title: Predicted polymorph manipulation in an exotic double perovskite oxide
Authors: Su, He-Ping
Li, Shu-Fang
Han, Yifeng
Wu, Mei-Xia
Gui, Churen
Chang, Yanfen
Li, Man-Rong
Adem, Umut
Issue Date: 2019
Publisher: Royal Society of Chemistry
Abstract: Predicted polymorph manipulation offers a cutting-edge route to design function-oriented materials in an exotic double perovskite-related oxide A(2)BB ' O-6 with small A-site cations. Herein, first-principles density functional theory calculations in light of the equation of state for solid, for the first time, was used to predict the Mg3TeO6 (R3)-to-perovskite (P2(1)/n) type phase transition in Mn3TeO6 at around 5 GPa, regardless of the deployment of magnetic interactions. The high-pressure synthesis and synchrotron diffraction crystal structure analysis corroborated experimentally the polymorph variation in Mn22+Mn2+Te6+O6, which was accompanied by a 13 K increase in the antiferromagnetic ordering temperature (37 K) in the high-pressure perovskite polymorph compared to that of the ambient-pressure R3 phase (24 K). The magnetodielectric coupling remains up to 50 K with the maximum being around the magnetic ordering temperature in the perovskite Mn3TeO6. Thus, the predicted polymorph manipulation here offers the possibility of discovering accelerated materials by inverse design in exotic perovskite oxides.
ISSN: 2050-7526
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
c9tc03367j.pdf3.72 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Jan 28, 2023


checked on Dec 24, 2022

Page view(s)

checked on Jan 23, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.