Please use this identifier to cite or link to this item:
Title: Inertia dependent droop based frequency containment process
Authors: Das, Kaushik
Altın, Müfit
Hansen, Anca D.
Sorensen, Poul E.
Keywords: Inertia
Wind power
Frequency control
Primary control
Frequency containment process
Issue Date: 2019
Publisher: MDPI Multidisciplinary Digital Publishing Institute
Abstract: Presently, there is a large need for a better understanding and extensive quantification of grid stability for different grid conditions and controller settings. This article therefore proposes and develops a novel mathematical model to study and perform sensitivity studies for the capabilities of different technologies to provide Frequency Containment Process (FCP) in different grid conditions. A detailed mathematical analytical approach for designing inertia-dependent droop-based FCP is developed and presented in this article. Impacts of different droop settings for generation technologies operating with different inertia of power system can be analyzed through this mathematical approach resulting in proper design of droop settings. In contrast to the simulation-based model, the proposed novel mathematical model allows mathematical quantification of frequency characteristics such as nadir, settling time, ROCOF, time to reach the nadir with respect to controller parameters such as gain, droop, or system parameters such as inertia, volume, of imbalance. Comparative studies between cases of frequency containment reserves (FCR) provision from conventional generators and wind turbines (WTs) are performed. Observations from these simulations are analyzed and explained with the help of an analytical approach which provides the feasible range of droop settings for different values of system inertia. The proposed mathematical approach is validated on simulated Continental Europe (CE) network. The results show that the proposed methodology can be used to design the droop for different technology providing FCP in a power system operating within a certain range of inertia.
ISSN: 1996-1073
Appears in Collections:Energy Systems Engineering / Enerji Sistemleri Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
energies-12-01648.pdfMakale (Article)1.68 MBAdobe PDFThumbnail
Show full item record

CORE Recommender


checked on Dec 9, 2023


checked on Jun 17, 2023

Page view(s)

checked on Dec 11, 2023


checked on Dec 11, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.