Please use this identifier to cite or link to this item:
Title: Monitoring the crystal orientation of black-arsenic via vibrational spectra
Authors: Kandemir, Ali
İyikanat, Fadıl
Şahin, Hasan
Issue Date: 2019
Publisher: Royal Society of Chemistry
Abstract: In this study, the structural, mechanical, and vibrational properties of a recently discovered anisotropic ultra-thin material, black-arsenic (b-As), are investigated by using density functional theory. Direction dependent elastic constants such as in-plane stiffness, Young's modulus and Poisson's ratio of single-layer b-As are calculated and compared with those of the structural cousin black-phosphorus (b-P). The calculated Poisson's ratio of b-As for the zigzag direction is nearly 1, which is quite higher than that of b-P, 0.65. Besides, it is found that all the three elastic constants are highly anisotropic and their values in the zigzag direction are almost three times higher than that of the armchair direction. The mechanical strength of the material is also calculated and high-toughness is seen in both armchair and zigzag directions. It is revealed that the material is quite stiff against straining along the zigzag direction; in contrast, it is quite flexible along the armchair direction. Vibrational stability analysis shows that the material is stable up to 9% biaxially applied strain, and 12% and 45% uniaxially applied strain in the zigzag and armchair directions, respectively. Furthermore, the prominent Raman active peaks of the b-As structure show strong anisotropy in the strain dependent vibrational spectra and they can also be used for easy-determination of the crystal orientation of b-As from Raman measurements.
ISSN: 2050-7526
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Photonics / Fotonik
Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
c8tc05167d.pdf4.78 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Feb 16, 2024


checked on Feb 17, 2024

Page view(s)

checked on Feb 19, 2024


checked on Feb 19, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.