Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9253
Title: Dynamic analysis of an immersed tunnel in Izmir
Authors: Egeli, İsfendiyar
Gürbüz, Çağdaş
Keywords: Immersed tube tunnel
Dynamic 2-D analysis
Soil-tunnel interaction
Earthquake response of subsea tunnels
Issue Date: 2018
Publisher: Escuela de Construcción Civil of Pontificia Universidad Católica de Chile
Abstract: The original design of the planned Izmir Bay Immersed Tube Tunnel, considered it to be a continuous subsea tunnel for the whole length of about 7.6 km. But this was later changed into having 2 shorter tubes of 2.7 km long each connected thru' a 2.2 km long artificial island created in the middle of the bay from the excess dredged material, a concept which also reduces costs and increases efficiency. This island will serve as a venue for the 2025 Expo Exhibition, which Izmir city will apply to organize in the future. Reason for the research study was to provide a preliminary design, using a dynamic analysis, during the current pre-feasibility stage, of the immersed tunnel to show whether it can be built across the Izmir Bay. This paper takes into account the new alignment and presents the results of a 2-D dynamic analysis conducted of the prefabricated 100m long tunnel elements, sitting within a backfilled dredged ditch, dug after the recommended ground improvement was carried out. Analyses considered staged construction and the results showed that: Tunnel units and its surrounding soils inside the dredged ditch act together to provide a better earthquake response with a damping effect of the earthquake force; Tunnel units do not float to the sea surface, but continued to stay inside the dredged ditch and applied positive stresses to the foundations during the design earthquakes. As there was no floating, there was no need for anchoring the tunnel to ditch bottom; Tunnel units and immersion joints (made of specified strong elastomer material) continued to stay in compression longitudinally and provided a superb water-tightness level; There were no risky (un-tolerable) ground deformations during, after striking of the design earthquakes. Total vertical and differential displacements of the tunnel units and in the surrounding soils were all at acceptable levels; Concrete surface crack widths occurring in the tunnel units, during striking of the design earthquakes were also found to be allowable. Study results show that the tunnel elements can withstand Mw=7 short duration (<10 sec) or Mw=6 long duration (>10 sec) earthquakes without major damages to their structure.
URI: https://doi.org/10.7764/RDLC.17.1.103
https://hdl.handle.net/11147/9253
ISSN: 0718-915X
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
13774-Article Text-26886-1-10-20200512.pdf844.66 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Mar 1, 2024

WEB OF SCIENCETM
Citations

3
checked on Feb 10, 2024

Page view(s)

990
checked on Mar 4, 2024

Download(s)

126
checked on Mar 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.