Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9262
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkbalı, Barış-
dc.contributor.authorTopçu, Gökhan-
dc.contributor.authorGüner, Tuğrul-
dc.contributor.authorÖzcan, Mehmet-
dc.contributor.authorDemir, Mustafa Muammer-
dc.contributor.authorŞahin, Hasan-
dc.date.accessioned2020-07-25T22:09:17Z-
dc.date.available2020-07-25T22:09:17Z-
dc.date.issued2018-
dc.identifier.issn2475-9953-
dc.identifier.urihttps://doi.org/10.1103/PhysRevMaterials.2.034601-
dc.identifier.urihttps://hdl.handle.net/11147/9262-
dc.description.abstractRecent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review Materialsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDegradation mechanismen_US
dc.subjectBromine compoundsen_US
dc.subjectPerovskitesen_US
dc.titleCsPbBr3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradationen_US
dc.typeArticleen_US
dc.institutionauthorAkbalı, Barış-
dc.institutionauthorTopçu, Gökhan-
dc.institutionauthorGüner, Tuğrul-
dc.institutionauthorÖzcan, Mehmet-
dc.institutionauthorDemir, Mustafa Muammer-
dc.institutionauthorŞahin, Hasan-
dc.departmentİzmir Institute of Technology. Physicsen_US
dc.departmentİzmir Institute of Technology. Materials Science and Engineeringen_US
dc.departmentİzmir Institute of Technology. Photonicsen_US
dc.identifier.volume2en_US
dc.identifier.issue3en_US
dc.identifier.wosWOS:000426635500001en_US
dc.identifier.scopus2-s2.0-85048804342en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1103/PhysRevMaterials.2.034601-
dc.relation.doi10.1103/PhysRevMaterials.2.034601en_US
dc.coverage.doi10.1103/PhysRevMaterials.2.034601en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusquality--
dc.identifier.wosqualityttpTop10%en_US
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept03.09. Department of Materials Science and Engineering-
crisitem.author.dept04.04. Department of Photonics-
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Photonics / Fotonik
Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
PhysRevMaterials.2.034601.pdf3.33 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

67
checked on Mar 22, 2024

WEB OF SCIENCETM
Citations

72
checked on Mar 16, 2024

Page view(s)

3,476
checked on Mar 25, 2024

Download(s)

54
checked on Mar 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.