Please use this identifier to cite or link to this item:
Title: Effects of hybrid yarn preparation technique and fiber sizing on the mechanical properties of continuous glass fiber-reinforced polypropylene composites
Authors: Merter, N. Emrah
Başer, Gülnur
Tanoğlu, Metin
Keywords: Commingling
Hybrid yarns
Polypropylene matrix composites
Glass fibers
Thermoplastic composites
Issue Date: 2016
Publisher: SAGE Publications
Abstract: In this study, hybrid yarns were developed by commingling the continuous polypropylene and glass fibers using air jet and direct twist preparation techniques. The non-crimp fabrics were obtained with +/- 45 degrees fiber orientation from these hybrid yarns. The fabrics were prepared with fiber sizings that are compatible and incompatible with polypropylene matrix to investigate the effect of interfacial adhesion on the properties of the thermoplastic composites. Composite panels were produced from the developed fabrics by hot press compression method and microstructural and mechanical properties of the composites were investigated. It was found that type of the hybrid yarn preparation technique and glass fiber sizing applied on the glass fibers have some important role on the properties of the composites. Composites made of fabrics produced by air jet hybrid yarn preparation technique exhibited better results than those produced by direct twist covering (single or double) hybrid yarn preparation techniques. The highest flexural properties (99.1MPa flexural strength and 9.55 GPa flexural modulus) were obtained from the composites manufactured from fabric containing compatible sizing, due to better adhesion at the interface of glass fibers and polypropylene matrix. The composite fabricated from fabric with polypropylene compatible sizing also exhibited the highest peel resistance (interlaminar peel strength value of 5.87N/mm). On the other hand, it was found that hybrid yarn preparation technique and type of the glass fiber sizing have insignificant effect on the impact properties of the glass fiber/polypropylene composites.
ISSN: 0021-9983
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
0021998315595710.pdf1.05 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Dec 9, 2023


checked on Jun 17, 2023

Page view(s)

checked on Dec 11, 2023


checked on Dec 11, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.