Please use this identifier to cite or link to this item:
Title: Quantum properties and applications of 2D Janus crystals and their superlattices
Authors: Yağmurcukardeş, Mehmet
Qin, Y.
Özen, Sercan
Sayyad, M.
Peeters, François M.
Tongay, S.
Şahin, Hasan
Issue Date: 2020
Publisher: American Institute of Physics
Abstract: Two-dimensional (2D) Janus materials are a new class of materials with unique physical, chemical, and quantum properties. The name "Janus" originates from the ancient Roman god which has two faces, one looking to the future while the other facing the past. Janus has been used to describe special types of materials which have two faces at the nanoscale. This unique atomic arrangement has been shown to present rather exotic properties with applications in biology, chemistry, energy conversion, and quantum sciences. This review article aims to offer a comprehensive review of the emergent quantum properties of Janus materials. The review starts by introducing 0D Janus nanoparticles and 1D Janus nanotubes, and highlights their difference from classical ones. The design principles, synthesis, and the properties of graphene-based and chalcogenide-based Janus layers are then discussed. A particular emphasis is given to colossal built-in potential in 2D Janus layers and resulting quantum phenomena such as Rashba splitting, skyrmionics, excitonics, and 2D magnetic ordering. More recent theoretical predictions are discussed in 2D Janus superlattices when Janus layers are stacked onto each other. Finally, we discuss the tunable quantum properties and newly predicted 2D Janus layers waiting to be experimentally realized. The review serves as a complete summary of the 2D Janus library and predicted quantum properties in 2D Janus layers and their superlattices.
ISSN: 1931-9401
Appears in Collections:Photonics / Fotonik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1.5135306.pdf5.37 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Nov 25, 2023


checked on Jun 19, 2023

Page view(s)

checked on Nov 27, 2023


checked on Nov 27, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.