Please use this identifier to cite or link to this item:
Title: Applied mel-frequency discrete wavelet coefficients and parallel model compensation for noise-robust speech recognition
Authors: Tüfekçi, Zekeriya
Gowdy, John N.
Gürbüz, Sabri
Patterson, Eric
Keywords: Noise robust ASR
Local feature
Feature weighting
Issue Date: 2006
Publisher: Elsevier
Abstract: Interfering noise severely degrades the performance of a speech recognition system. The Parallel Model Compensation (PMC) technique is one of the most efficient techniques for dealing with such noise. Another approach is to use features local in the frequency domain, such as Mel-Frequency Discrete Wavelet Coefficients (MFDWCs). In this paper, we investigate the use of PMC and MFDWC features to take advantage of both noise compensation and local features (MFDWCs) to decrease the effect of noise on recognition performance. We also introduce a practical weighting technique based on the noise level of each coefficient. We evaluate the performance of several wavelet-schemes using the NOISEX-92 database for various noise types and noise levels. Finally, we compare the performance of these versus Mel-Frequency Cepstral Coefficients (MFCCs), both using PMC. Experimental results show significant performance improvements for MFDWCs versus MFCCs, particularly after compensating the HMMs using the PMC technique. The best feature vector among the six MFDWCs we tried gave 13.72 and 5.29 points performance improvement, on the average, over MFCCs for -6 and 0 dB SNR, respectively. This corresponds to 39.9% and 62.8% error reductions, respectively. Weighting the partial score of each coefficient based on the noise level further improves the performance. The average error rates for the best MFDWCs dropped from 19.57% to 16.71% and from 3.14% to 2.14% for -6 dB and 0 dB noise levels, respectively, using the weighting scheme. These improvements correspond to 14.6% and 31.8% error reductions for -6 dB and 0 dB noise levels, respectively. (c) 2006 Elsevier B.V. All rights reserved.
ISSN: 0167-6393
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1-s2.0-S016763930600077X-main.pdf289.5 kBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Feb 16, 2024


checked on Feb 17, 2024

Page view(s)

checked on Feb 23, 2024


checked on Feb 23, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.