Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9978
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKöktürk, Başak Esin-
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2021-01-24T18:31:50Z-
dc.date.available2021-01-24T18:31:50Z-
dc.date.issued2013-
dc.identifier.isbn978-1-4673-5563-6-
dc.identifier.isbn978-1-4673-5562-9-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/11147/9978-
dc.description21st Signal Processing and Communications Applications Conference (SIU)en_US
dc.description.abstractThe aim of this study, nuclei base automatic detection of cancerous regions via determination of DNA-rich regions in high definition histology images. In the study; DNA-rich regions were determined using k-means clustering and some mathematical morphology operations, the diseased regions were diagnosed using morphological characteristics via quasi-supervised learning. It's observed that quasi-supervised learning method successfully separates cancerous chromatin regions from others successfully with experiments of colon cross-section histology images.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2013 21st Signal Processing and Communications Applications Conference, SIU 2013en_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectQuasi-supervised learningen_US
dc.subjectmathematical morphologyen_US
dc.subjectsegmentationen_US
dc.titleQuasi-supervised learning on DNA regions in colon cancer histology slidesen_US
dc.typeConference Objecten_US
dc.institutionauthorKöktürk, Başak Esin-
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.wosWOS:000325005300150en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

110
checked on Apr 8, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.