Soygazı, FatıhOguz, Damla2025-08-272025-08-2720252687-4415https://doi.org/10.46387/bjesr.1597329https://search.trdizin.gov.tr/en/yayin/detay/1311443/medical-text-classification-using-semisupervised-learning-and-bert-based-modelshttps://hdl.handle.net/11147/18402Tıbbi metin sınıflandırması, yetersiz eğitim verisi gibi zorluklarla karşılaşarak karmaşık tıbbi metinleri düzenlemektedir. Bu çalışma, sağlık sorunları özetleri ve etiketleri içeren bir veri setine dayanarak tıbbi metinleri sınıflandırmak için yeni bir yöntem önermektedir. Etiketli veri setimize veri temsil teknikleri uyguladık ve metin sınıflandırması için çeşitli makine öğrenmesi algoritmaları kullandık. İlk sonuçlar, sınırlı etiketli veriler nedeniyle yeterli bulunmamıştır. Bunu geliştirmek için, etiketli verileri zenginleştirmek amacıyla etiketlenmemiş bir veri seti kullanarak veri artırma teknikleri uyguladık; bu süreçte BERT tabanlı modeller (BioBERT, ClinicalBERT) kullanılmıştır. Yeni etiketli kayıtları doğrulamak ve veri setine eklemek için çoğunluk oylama ve ağırlıklı çoğunluk oylama gibi farklı oylama mekanizmaları kullanılmıştır. Etiketli verileri artırdıktan sonra, makine öğrenmesi algoritmalarını yeniden uygulanmıştır. Sonuçlar, yaklaşımımızın tıbbi metin sınıflandırmasının performansını önemli ölçüde artırdığını, sınırlı etiketli verilerin getirdiği zorlukları etkili bir şekilde ele aldığını ve genel doğruluğu artırdığını göstermiştir.eninfo:eu-repo/semantics/openAccessMedical Text Classification Using Semisupervised Learning and Bert-Based ModelsYarı Denetimli Öğrenme ve Bert Tabanlı Modeller Kullanılarak Tıbbi Metin SınıflandırmaArticle10.46387/bjesr.1597329