IZTECH Research Centers Collection / İYTE Araştırma Merkezleri Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/11147/2636
Browse
Browsing IZTECH Research Centers Collection / İYTE Araştırma Merkezleri Koleksiyonu by Access Right "info:eu-repo/semantics/closedAccess"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Article Citation - WoS: 52Citation - Scopus: 54Assessment of Different Nanofiltration and Reverse Osmosis Membranes for Simultaneous Removal of Arsenic and Boron From Spent Geothermal Water(Elsevier, 2021) Jarma, Yakubu A.; Karaoğlu, Aslı; Tekin, Özge; Baba, Alper; Ökten, H.Eser; Tomaszewska, Barbara; Kabay, Nalan; 03.03. Department of Civil Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyOne of the factors that determine agricultural crops’ yield is the quality of water used during irrigation. In this study, we assessed the usability of spent geothermal water for agricultural irrigation after membrane treatment. Preliminary membrane tests were conducted on a laboratory-scale set up followed by mini-pilot scale tests in a geothermal heating center. In part I, three commercially available membranes (XLE BWRO, NF90, and Osmonics CK- NF) were tested using a cross-flow flat-sheet membrane testing unit (Sepa CF II, GE-Osmonics) under constant applied pressure of 20 bar. In part II, different spiral wound membranes (TR-NE90-NF, TR-BE-BW, and BW30) other than the ones used in laboratory tests were employed for the mini-pilot scale studies in a continuous mode. Water recovery and applied pressure were maintained constant at 60% and 12 bar, respectively. Performances of the membranes were assessed in terms of the permeate flux, boron and arsenic removals. In laboratory tests, the permeate fluxes were measured as 94.3, 87.9, and 64.3 L m?2 h?1 for XLE BWRO, CK-NF and NF90 membranes, respectively. The arsenic removals were found as 99.0%, 87.5% and 83.6% while the boron removals were 56.8%, 54.2%, and 26.1% for XLE BWRO, NF90 and CK-NF membranes, respectively. In field tests, permeate fluxes were 49.9, 26.8 and 24.0 L m?2 h?1 for TR-NE90-NF, BW30-RO and TR-BE-BW membranes, respectively. Boron removals were calculated as 49.9%, 44.1% and 40.7% for TR-BE-BW, TR-NE90-NF and BW30-RO membranes, respectively. Removal efficiencies of arsenic in mini-pilot scale membrane tests were all over 90%. Quality of the permeate water produced was suitable for irrigation in terms of the electrical conductivity (EC) and the total dissolved solids (TDS) for all tested membranes with respect to guidelines set by the Turkish Ministry of Environment and Urbanisation (TMEU). However, XLE BWRO, CK-NF and NF90 membranes failed to meet the required limits for irrigation in terms of boron and arsenic concentrations in the product water. The permeate streams of TR-BE-BW, TR-NE90-NF and BW30-RO membranes complied with the irrigation water standards in terms of EC, TDS and arsenic concentration while boron concentration remained above the allowable limit. © 2020 Elsevier B.V.Article Citation - WoS: 30Citation - Scopus: 35Assessment of Geothermal Energy Use With Thermoelectric Generator for Hydrogen Production(Pergamon-Elsevier Science LTD, 2021) Hadjiat, M. M.; Hancıoğlu, Ebru; Mraoui, A.; Ouali, S.; Hancıoğlu Kuzgunkaya, Ebru; Salhi, K.; Ouali, A. Ait; Benaouda, N.; 01. Izmir Institute of TechnologyIn this work, a new model for producing hydrogen from a low enthalpy geothermal source was presented. Thermal energy from geothermal sources can be converted into electric power by using thermoelectric modules instead of Organic Rankine Cycle (ORC) machines, especially for low geothermal temperatures. This electrical energy uses the water electrolysis process to produce hydrogen. Simulation and experiments for the thermoelectric module in this system were undertaken to assess the efficiency of these models. TRNSYS software is used to simulate the system in Hammam Righa spa, the temperature of this spring is 70 degrees C. Obtained results reveal that in hammam righa spa in Algeria, 0.5652 Kg hydrogen per square meter of thermoelectric generator (TEG) can be produced in one year. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 4Breakthrough Curve Analysis of Phosphorylated Hazelnut Shell Waste in Column Operation for Continuous Harvesting of Lithium From Water(Elsevier, 2024) Recepoğlu, Yaşar Kemal; Arar, Ozguer; Yuksel, Asli; 03.02. Department of Chemical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn batch-scale operations, biosorption employing phosphorylated hazelnut shell waste (FHS) revealed excellent lithium removal and recovery efficiency. Scaling up and implementing packed bed column systems necessitates further design and performance optimization. Lithium biosorption via FHS was investigated utilizing a continuous-flow packed-bed column operated under various flow rates and bed heights to remove Li to ultra-low levels and recover it. The Li biosorption capacity of the FHS column was unaffected by the bed height, however, when the flow rate was increased, the capacity of the FHS column decreased. The breakthrough time, exhaustion time, and uptake capacity of the column bed increased with increasing column bed height, whereas they decreased with increasing influent flow rate. At flow rates of 0.25, 0.5, and 1.0 mL/min, bed volumes (BVs, mL solution/mL biosorbent) at the breakthrough point were found to be 477, 369, and 347, respectively, with the required BVs for total saturation point of 941, 911, and 829, while the total capacity was calculated as 22.29, 20.07, and 17.69 mg Li/g sorbent. In the 1.0, 1.5, and 2.0 cm height columns filled with FHS, the breakthrough times were 282, 366, and 433 min, respectively, whereas the periods required for saturation were 781, 897, and 1033 min. The three conventional breakthrough models of the Thomas, Yoon-Nelson, and Modified Dose-Response (MDR) were used to properly estimate the whole breakthrough behavior of the FHS column and the characteristic model parameters. Li's extremely favorable separation utilizing FHS was evidenced by the steep S-shape of the breakthrough curves for both parameters flow rate and bed height. The reusability of FHS was demonstrated by operating the packed bed column in multi-cycle mode, with no appreciable loss in column performance.Article Citation - WoS: 4Citation - Scopus: 10Characterization of Sb Scaling and Fluids in Saline Geothermal Power Plants: a Case Study for Germencik Region (büyük Menderes Graben, Turkey)(Pergamon-Elsevier Science Ltd, 2021) Tonkul, Serhat; Baba, Alper; Demir, Mustafa M.; Regenspurg, Simona; 03.06. Department of Energy Systems Engineering; 03.03. Department of Civil Engineering; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyTurkey is located on the seismically active Alpine-Himalayan belt. Although tectonic activity causes seismicity in the Anatolian plate, it also constitutes an important geothermal energy resource. Today, geothermal energy production is heavily concentrated in Turkey's Western Anatolia region. Graben systems in this region are very suitable for geothermal resources. The Buyuk Menderes Graben (BMG) is an area of complex geology with active tectonics and high geothermal potential power. Germencik (Aydin) is located in the BMG, where the geothermal waters include mainly Na-Cl-HCO3 water types. This study examined the stibnite scaling formed in the preheater system of the Germencik Geothermal Field (GGF). The formation of the stibnite scaling on the preheater system dramatically reduces the energy harvesting of the GGF. Considering the stibnite scaling in the surface equipment, the optimum reinjection temperature was determined as 95 degrees C to prevent stibnite scaling in the GGF.Article Citation - WoS: 32Citation - Scopus: 35Distribution of Geothermal Arsenic in Relation To Geothermal Play Types: a Global Review and Case Study From the Anatolian Plate (turkey)(Elsevier, 2021) Baba, Alper; Uzelli, Taygun; Sözbilir, Hasan; 03.03. Department of Civil Engineering; 01.01. Units Affiliated to the Rectorate; 01. Izmir Institute of Technology; 03. Faculty of EngineeringArsenic has a natural cycle as it travels underground. It can mix with geothermal fluid in different ways under the control of magmatic and tectonic processes. Geogenic arsenic is present in many geothermal fields in the world at concentrations above the limits set for human health. The arsenic content of geothermal fluids is also related to the concept of geothermal play type, which forms geothermal systems, because the natural processes that form the geothermal system also control the arsenic cycle. In this study, an attempt is made to explain the relationship between the geothermal play type concept and geothermal arsenic circulation. For this purpose, geothermal field examples are given from around the world and Turkey. The result shows that arsenic concentrations can reach significant levels along with plate tectonic boundaries in the world. When arsenic concentrations were evaluated, the effect of major faults on the Anatolian Plate was clearly seen. Also, in the Anatolian plate where volcanosedimentary units are common, geothermal fluids caused more effective alteration along with structural control and increased arsenic concentrations in geothermal systems. This interaction between structural elements, geothermal fluid, and the arsenic cycle shows that the concept of play type in geothermal systems should also be taken into consideration. It was determined that the places with high arsenic values are located within the convective-non-magmatic extensional geothermal play types such as Western Anatolian Extensional System and the North Anatolian Fault. The concept of play type in geothermal systems includes all systematic and external factors that make up these processes. For this reason, it is very important to evaluate the play type classification together with the arsenic cycle.Article Citation - WoS: 3Citation - Scopus: 6Effect of High Salinity and Temperature on Water-Volcanic Rock Interaction(Springer, 2021) Gören, Ayşegül Yağmur; Gören, Ayşegül Yağmur; Topçu, Gökhan; Demir, Mustafa Muammer; Demir, Mustafa M.; Baba, Alper; Baba, Alper; 03.07. Department of Environmental Engineering; 03.03. Department of Civil Engineering; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn order to understand the processes occurring in natural hydrothermal systems, it was carried out a series of water-volcanic rock interaction studies in the laboratory and an intermediate volcanic rock samples from geothermal production wells in Tuzla geothermal field (TGF) in western Turkey. A high-pressure autoclave was used to conduct water-rock interaction experiments under similar conditions of the field. Rainwater and seawater were treated with volcanic rocks at 140 degrees C (reservoir temperature) and 4.5 bar pressure. The change in the ionic content of the resulting fluids was examined in terms of the type of volcanic rocks and mineral saturation index. The results indicate that talc and diopside minerals in geothermal systems may cause scaling at high temperatures depending on the geothermal fluid and pH.Conference Object Citation - Scopus: 1Enterprise Systems Applications Development Plans To Build and Develop Robust and Environmentally Sensitive Green Logistics Systems Management Software(Springer Verlag, 2009) Yıldız, Türkay; Yercan, Funda; 01. Izmir Institute of TechnologyWithin the concept of enterprise-wide development of environmentally sensitive systems' application modules to fully integrate all-in-one green logistics services principles have received much attention and consideration from practitioners, academia, and from the industry, for about more than a decade. However, by taking into the consideration of the multidisciplinary nature of the issue, large scale effective collaborative framework is needed to be developed. Therefore, utilization of UML diagrams, class definitions, defining class relationships, fields, tables, views, etc. so on play crucial roles in the design phases of the enterprise system. Thus, this article largely deals with the major logistics work processes and their interactions within the consideration of environmental engineering issues on business operations to address step-by-step process control mechanisms to provide necessary input to build robust-design and better implementation of the needed IT software backbone.Article Citation - WoS: 3Citation - Scopus: 4Evaluation of Multifunctional Hybrid Analogs for Stilbenes, Chalcones and Flavanones(Bentham Science Publishers, 2017) Çağır, Ali; Odacı, Burcu; Varol, Mehmet; Akçok, İsmail; Okur, Özgür; Koparal, Ayşe T.; 04.01. Department of Chemistry; 04. Faculty of Science; 01. Izmir Institute of TechnologyAims: In this study, discovery of novel anticancer agents acting by more than one mechanism was aimed. Method: For this purpose, eleven previously synthesized simple-stilbene, chalcone, flavanone derivatives and 31 novel stilbene-fused chalcones and stilbene-fused flavanones were tested for their aromatase inhibition, anti-angiogenic and anti-proliferative properties in cancer (PC3, MCF-7) and healthy (HUVEC) cell lines. MTT cell viability assay was used to evaluate the anti-proliferative activities of the compounds. CYP19/MFC high-throughput screening kit (BD Biosciences, Oxford, UK) was used to search the aromatase inhibition properties and matrigel tube formation assay was applied to determine the anti-angiogenic activities. Results: Results indicate that the simple-chalcone and flavanone derivatives were more cytotoxic than the simple-stilbenes in the both cancer cell lines. In contrast, the simple-stilbene structures were much more effective at aromatase inhibition. The cytotoxicity profiles of stilbene-fused chalcones in cancer cells imply that these molecules mostly mimic the simple chalcone structures. On the other hand, flavanones lose their cytotoxic activities after becoming fused with stilbenes. Additionally, aromatase inhibition assays showed that stilbene-fused chalcones again do mimic the simple-chalcones but not simple-stilbenes and anti-angiogenic profiles of the tested molecules seem to be not related with stilbene fragments. Furthermore, stilbene-fused flavanones may mimic both simple-flavanones and simple-stilbenes depending upon the type and position of the substituent in their respective terminal aromatic rings.Book Part Exergetic and Exergoeconomic Aspects of Ground-Source (geothermal) Heat Pumps in Turkey(Taylor & Francis, 2014) Hepbaşlı, Arif; Hancıoğlu Kuzgunkaya, Ebru; 01. Izmir Institute of TechnologyThe demand for energy has recently increased rapidly as a result of the world’s population increase and industrial growth. On the contrary, fossil fuel supply is declining due to depletion of the resources. Moreover, utilization of fossil fuel energy resources has resulted in adverse effects on the global environment. In this regard, there is an urgent need to implement the use of sustainable and environmentally clean energy sources. In this context, renewable energy sources, including geothermal sources, can play a critical role in meeting the energy demands of societies.Article Citation - WoS: 1Citation - Scopus: 1Groundwater Recharge Estiaton in the Alaşehir Sub-Basin Using Hydro-Geochemical Data; Alaşehir Case Study(Springer, 2021) Tonkul, Serhat; Baba, Alper; Şimşek, Celalettin; Demirkesen, Ali Can; 03.06. Department of Energy Systems Engineering; 02.03. Department of City and Regional Planning; 03.03. Department of Civil Engineering; 03. Faculty of Engineering; 01. Izmir Institute of Technology; 02. Faculty of ArchitectureThe issue of groundwater recharge has gained importance in countries where there is not enough water supply to the aquifer. However, groundwater recharge is a difficult parameter to determine. This difficulty stems from factors such as the location of the area to be studied, time, cost, and hydrological data. Numerical, isotope, and chemical approaches are used in groundwater recharge investigations. Numerical and chemical approaches are more costly and time-consuming than chemical approaches. This study aims to ascertain alluvial aquifer recharge in Alaehir (Manisa) sub-basin using chemical approaches (Chloride Mass Balance Method) and its applicability. For this purpose, research wells were drilled at 25 different points in the alluvial aquifer, water sampling was done in wet and dry periods, and rainwater water samples were collected. Groundwater recharge was calculated by using chemical approaches from the chloride concentrations of the water samples collected. An annual average of 74.84 mm of recharge was found in the Alaehir sub-basin. This value corresponds to 16.38% of annual rainfall. At the same time, it was examined the groundwater and geothermal mixing mechanism to demonstrate the applicability of the Chloride Mass Balance Method. It was concluded that geothermal fluid in Alaehir sub-basin mixed with groundwater at a rate of 17%.Book Part Citation - Scopus: 2High Radiogenic Granites of Western Anatolia for Egs: a Review(CRC Press, 2023) Chandrasekharam, Dornadula; Baba, Alper; Ayzit, Tolga; 03.03. Department of Civil Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyTurkey has made remarkable progress in the hydrothermal sector by promoting both electricity generation and direct application. In terms of power generation, this country is the fourth top country in the world. Nearly 1 billion kWh of energy is being utilized to keep 150,000 homes warm in the winter. In addition, Turkey has huge amounts of uptapped energy in its high radiogenic granites in western Anatolia, spread over a cumulative area of 6,910 km2. The radioactive heat generated by these granites varies from 5 to 13 µW/m3. These granite plutons are located over a region with high heat flow values (120 mW/m2) and the Curie temperature isotherm in this region is located at a depth varying from 6 to 12 km. The heat flow values here are 50% higher than the world average. This thermal regime concurs well with the wet granite melting curve at a heat flow of 85 mW/m2. The entire thermal regime indicates a visco-elastic lower crustal layer in this region. Thus, these granites provide excellent sites for initiating Enhanced Geothermal Systems projects in Turkey. Earlier EGS projects in France and Australia gave power estimates of 79×106 kWh of electricity from 1km3 of such granite. With ongoing development in drilling technology, the classical concept of creating a fracture network is being replaced with loop technology that reduces minor seismic risks and also the cost of power. The most important additional advantage Turkey has is the high-temperature regime at shallow depth, unlike other countries where the granites are located at depths >5km. These factors cause the cost of power to fall below 6 euro cents per kWh. Besides the power and heat, the greatest advantage is the reduction in emissions and achieving UN sustainable development goals. A conservative estimate shows that these radiogenic granites of western Anatolia are capable of generating a minimum of 546×109 kWh of power. Energy from these granites can be utilized to generate freshwater using the desalination method. Earlier studies indicate that to produce 1 m3 of desalinated water, ~16 kWh of electrical energy are needed. The cost of fresh water generated using geothermal energy sources will be <1.5 euros per 1m3. Turkey can utilize the energy from granite for water and food security in the future. © 2024 selection and editorial matter, Dornadula Chandrasekharam and Alper Baba.Article Citation - WoS: 6Citation - Scopus: 6A Novel Land Surface Temperature Reconstruction Method and Its Application for Downscaling Surface Soil Moisture With Machine Learning(Elsevier, 2024) Güngör, Şahin; Gündüz, Orhan; 03.10. Department of Mechanical Engineering; 03.07. Department of Environmental Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyDownscaling of soil moisture data is important for high resolution hydrological modeling. Most downscaling studies in the literature have used spatially discontinuous land surface temperature (LST) maps as the main auxiliary parameter, which limits the creation of continuous soil moisture maps. The number of studies on soil moisture downscaling with machine learning that use gapless LST maps is limited. With this motivation, a hybrid reconstruction method has been proposed in this study to practically obtain continuous LST maps, which are then used to produce high resolution surface soil moisture (SSM) datasets. The proposed method is shown to have high mean performance with R2 and RMSE values of 0.94 and 1.84°K, respectively, for the period between 2019 and 2022. The developed reconstructed LST maps were then used to downscale original 9 km spatial resolution soil moisture datasets of SMAP L3 and SMAP L4 with Random Forest (RF) machine learning algorithm. The RF model were run with four different rainfall datasets, and the MSWEP rainfall dataset was found to produce the best results. The use of antecedent rainfall values as input variables in machine learning models has been shown to improve the performance of the models R2 0.76 to 0.93. The accuracy of the downscaled data was later evaluated for Western Anatolia Basins (WAB) in Türkiye with 31 in-situ stations. The downscaled SMAP L4 had good average statistical indicators R (0.815 ± 0.1), RMSE (0.09 ± 0.047 cm3/cm3), and ubRMSE (0.058 ± 0.025 cm3/cm3). Downscaled SMAP L3 was also validated with in-situ observations with satisfactory R (0.79 ± 0.074), RMSE (0.09 ± 0.043 cm3/cm3), and ubRMSE (0.06 ± 0.026 cm3/cm3) statistics. Furthermore, the performance of the downscaled SMAP L3 was also cross validated with SMAP + Sentinel 1 (L2) dataset between 2019 and 2022. The mean statistics of R (0.761 ± 0.11) and Root Mean Squared Difference (RMSD) (0.05 ± 0.014 cm3/cm3) between downscaled SMAP L3 and L2 data revealed that the new reconstruction method of LST used in the RF model for downscaling of soil moisture performed well to obtain high resolution soil moisture datasets. The proposed technique also overcame the difficulties associated with coastal regions where data was masked for quality considerations, by not only enhancing overall spatial resolution but also filling these data gaps and giving a complete SSM coverage. © 2024 Elsevier B.V.Article Citation - WoS: 30Citation - Scopus: 34Statistical Downscaling of Grace Twsa Estimates To a 1-Km Spatial Resolution for a Local-Scale Surveillance of Flooding Potential(Elsevier, 2023) Khorrami, Behnam; Pirasteh, Saied; Ali, Shoaib; Şahin, Onur Güngör; Vaheddoost, Babak; 01. Izmir Institute of TechnologyThe Gravity Recovery and Climate Experiment (GRACE) paved the way for large-scale monitoring of the hydrological extremes. However, local scale analysis is aslo challenging due to the coarse resolution of the GRACE estimates. The feasibility of the downscaled GRACE data for the flood monitoring in the Kizilirmak Basin (KB) in Turkiye is investigated in this study by integrating the GRACE and hydrological model outputs of a random forest approach. Results suggest that the TWSA, over the Asagi Kizilirmak Basin (AKB), is ascending with an annual rate of + 3.51mm/yr; while the Orta Kizilirmak Basin (OKB), Yukari Kizilirmak Basin (YKB), Delice Basin (DB), Develi Kapali Basin (DKB), and Seyfe Kapali Basin (SKB) showed descending trend respectively as -1.15mm/yr, -1.58mm/yr, -1.14mm/yr, -2.34mm/yr, and -1.31mm/yr. The hydrological status of the basin showed that in 2003, 2005, 2010-2013, and 2015-2016 periods the study area was prone to the inundation. Hence, by validating the Flood Potential Index (FPI) rates acquired from the downscaled GRACE data, it was shown that the best correlation coefficient (0.73) between FPI and streamflow (Q) is associated with the SKB. It is also concluded that the downscaled TWSA associated with the fine-resolution models depicts acceptable accuracy in determination of the flood potential at local scales.Article Citation - WoS: 15Citation - Scopus: 15Synthesis, Characterization and Adsorption Studies of Phosphorylated Cellulose for the Recovery of Lithium From Aqueous Solutions(Editura Acad Romane, 2021) Recepoğlu, Yaşar Kemal; Yüksel, Aslı; 03.02. Department of Chemical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn this study, pristine cellulose was functionalized by the phosphorylation reaction to make it suitable for lithium separation. After characterization studies of the synthesized adsorbent with SEM, EDX, FTIR, TGA and XPS, the effects of various parameters on the lithium uptake capacity of the adsorbent were examined. The analysis of equilibrium data by several adsorption models showed that maximum adsorption capacity of the adsorbent was found to be 9.60 mg/g at 25 degrees C by the Langmuir model. As initial concentration and contact time increased, adsorption capacity also increased, however, mild temperature (25-35 degrees C) and pH (5-6) were better for the adsorption of lithium. 80% of lithium adsorption within three minutes proved the fast kinetic nature of the adsorbent. A 99.5% desorption efficiency of lithium was achieved with 0.5 M H2SO4, among HCl and NaCl with different molarities. Phosphorylated cellulose was shown to be a favorable adsorbent for the recovery of lithium from aqueous solutions.