Mechanical Engineering / Makina Mühendisliği
Permanent URI for this collectionhttps://hdl.handle.net/11147/4129
Browse
Recent Submissions
Conference Object Redundancy resolution options for the twin-it-romans robotic hybrid manufacturing system(Springer Science and Business Media B.V., 2025) Gündüz, G.M.; Dede, Mehmet İsmet Can; Dede, Mehmet İsmet Can; Kiper, Gökhan; Kiper, Gökhan; Schmitz, M.; Corves, B.; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe Twinnig Iztech in Robotics Manufacturing System (TWIN-IT-ROMANS) project funded by EU Horizon -Widera-2023-Access-02-01 aims to develop a hybrid manufacturing system that can perform additive and subtractive manufacturing processes and inline quality control using a robotic system. The system will incorporate a 6-degree-of-freedom robot arm and a positioner with 2-degree-of-freedom, which will operate synchronously. This manipulation system is to be designed for performing different manufacturing operations with different degrees-of-freedom requirements. In order to reveal alternative trajectory planning scenarios for this system, this paper presents an initial review of redundancy resolution approaches for kinematically redundant robotic manipulators. First, the four main approaches for redundancy resolution techniques are introduced. Then main studies on energy minimization and stiffness maximization for kinematically redundant robotic manipulators are reviewed. Similar or new approaches are planned to be generated and implemented for the redundant system for hybrid manufacturing. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.Article Analysis and Comparison of the Projectile Impact Response of an Electron Beam Melt-Ti64 Body Centered Cubic Lattice-Cored Sandwich Plate(Springer, 2025) Erten, H.İ.; Güden, Mustafa; Çimen, G.; Yıldıztekin, F.M.; Güden, M.; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyBackground: One potential application of additively fabricated lattice structures is in the blade containment rings of gas turbine engines. The blade containment rings are expected to be able to absorb the kinetic energy of a released blade (broken blade) in order to protect the engine parts from damaging. Metallic lattice-cored sandwich plates provide a gap (free space) between two face sheets, which helps to arrest the released blade and increases the energy absorption capability of containment rings. Objective: The objective was to investigate numerically the projectile impact response of Body-Centered-Cubic (BCC) Electron-Beam-Melt (EBM) lattice-cored/Ti64 face sheet sandwich plates as compared with that of an equal-mass monolithic EBM-Ti64 plate. Methods: The projectile impact simulations were implemented in LS-DYNA using the previously determined flow stress and damage models and a spherical steel impactor at the velocities ranging from 150 to 500 m s−1. The experimental projectile impact tests on the monolithic plate were performed at two different impact velocities and the results were used to confirm the validity of the used flow stress and damage models for the monolithic plate models. Results: Lower impact stresses were found numerically in the sandwich plate as compared with the monolithic plate at the same impact velocity. The bending and multi-cracking of the struts over a wide area in the sandwich plate increased the energy absorption and resulted in the arrest of the projectile at relatively high velocities. While monolithic plate exhibited a local bent area, resulting in the development of high tensile stresses and the projectile perforations at lower velocities. Conclusions: The numerical impact stresses in the sandwich plate were distributed over a wider area around the projectile, leading to the fracture and bending of many individual struts which significantly increased the resistance to the perforation. Hence, the investigated lattice cell topology and cell, strut, and face sheet sizes and the lattice-cored sandwich plate was shown potentially more successful in stopping the projectiles than the equal-mass monolithic plates. © The Author(s) 2025.Article Enhancing trajectory-tracking accuracy of high-acceleration parallel robots by predicting compliant displacements(Cambridge University Press, 2025) Paksoy, Erkan; Kiper, Gökhan; Dede, Mehmet Ismet Can; Paksoy, Erkan; Kiper, Gokhan; Dede, Mehmet İsmet Can; 01. Izmir Institute of Technology; 03.10. Department of Mechanical Engineering; 03. Faculty of EngineeringFor precision-required robot operations, the robot's positioning accuracy, repeatability, and stiffness characteristics should be considered. If the mechanism has the desired repeatability performance, a kinematic calibration process can enhance the positioning accuracy. However, for robot operations where high accelerations are needed, the compliance characteristics of the mechanism affect the trajectory-tracking accuracy adversely. In this paper, a novel approach is proposed to enhance the trajectory-tracking accuracy of a robot operating at high accelerations by predicting the compliant displacements when there is no physical contact of the robot with its environment. Also, this case study compares the trajectory-tracking characteristics of an over-constrained and a normal-constrained 2degrees-of-freedom (DoF) planar parallel mechanism during high-acceleration operations up to 5 g accelerations. In addition, the influence of the end-effector's center of mass (CoM) position along the normal of the plane is investigated in terms of its effects on the proposed trajectory-enhancing algorithm.Article Ağır Ticari Araçlarda Kullanılan Bir Volanın Parametrik Optimizasyon Yöntemiyle Tasarımının İyileştirilmesi(2022) Sırmalılar, Mehmet Yalçın; Sırmalılar, Mehmet Yalçın; Haktanır, Murat; Saklakoğlu, Nurşen; Eş, Caner; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyOtomotiv endüstrisinde rekabetçi olabilmenin anahtarı ürün geliştirmenin ilk aşamalarında üretim maliyetini ve ürün performansını düşünerek daha iyi yapısal tasarımlar elde etmektir. Son yıllarda sonlu eleman analizindeki gelişmeler daha güvenli ve daha ucuz tasarımların oluşturulmasını sağlamış ve bu yeteneği kazanan firmalar önemli avantajlar elde etmiştir. Bu çalışmada Dönmez Debriyaj firmasında seri üretimi yapılan bir volanın malzeme maliyetini azaltmak üzere boyut optimizasyonu gerçekleştirilmiştir. Bilgisayar destekli sonlu elemanlar yöntemi ile volanın çalışma koşulları simüle edilmiş, parametrik optimizasyon yöntemi ile volan için istenen mekanik özellikleri sağlamanın yanı sıra maliyeti en düşük tutacak şekilde optimizasyon yapılmıştır. Bu çalışma sonunda volan ağırlığı 27,956 kg’dan 26,019 kg’a düşürülerek, toplam volan ağırlığından %6,93 azaltma sağlanmıştır ve ilgili volan, analizlerden elde edilen sonuçlar doğrultusunda talaşlı üretim ile revize edilerek üretilmiş ve araç testine tabi tutulmuştur. Bu test sonucunda hiçbir hasarla karşılaşılmamıştır.Conference Object Kinematic Design of a Novel Finger Exoskeleton Mechanism for Rehabilitation Exercises(Springer international Publishing Ag, 2024) Kiper, Gokhan; Kiper, Gökhan; Inanc, Emirhan; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe paper presents the kinematic design of a novel low-cost two degree-of-freedom finger exoskeleton mechanism to be used for rehabilitation exercises for post-stroke or injured patients. The first degree-of freedom is for the flexion/extension of metacarpophalangeal joint and is achieved via a planar 4-bar loop. The second degree-of-freedom is for the simultaneous flexion/extension of distal/proximal interphalangeal joints and is achieved via an over-constrained double-spherical 6-bar linkage, where 3 of the links are the phalanges of the finger and 2 of the joints are finger joints themselves. So, the number of extra links are less compared to other designs in the literature. The motion of an index finger is recorded via image processing. The four-bar mechanism part is designed for optimum transmission angle characteristics. The formulation and application of the kinematic synthesis of the 6-bar linkage is presented. The design is verified via a prototype.Conference Object Citation - Scopus: 2A Continuously Variable Transmission System Designed for Human–robot Interfaces(Springer, 2021) Mobedi, Emir; Dede, Mehmet İsmet Can; Dede, Mehmet İsmet Can; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyWithin a predefined limit, continuously variable transmission (CVT) systems can continuously vary the power transmission ratio. The transmission in CVTs is achieved via friction, belt or gear systems. If CVT designs can incorporate backdrivability, independent output position and impedance variation, shock absorbtion, and low mass and inertia, they can be employed in human–robot interfaces. Among various types of CVT designs, the two-cone drive CVT designs have a major drawback since the output torque and position cannot be changed independent of each other. The friction wheel used in this design does not have a holonomic motion capability and causes this inconvenience. In order to overcome this problem, a sphere is used in this work for the CVT design as the transmission element. In addition, it is stated in the literature that common CVT drive systems do not have the capability to be used in cyclic bidirectional motion. In the presented CVT design, a second sphere is added to the system with two springs from the lower part of the cones for pretension in order to solve the bidirectional transmission problem. In this paper, the working principle and conceptual design details of the novel two-cone CVT drive are presented. Experimental results showed that the novel CVT has the capacity to transmit bidirectional power with some accuracy. © 2021, Springer Nature Singapore Pte Ltd.Conference Object Determination of Interfacial Heat Transfer Coefficient for a Mixed Convection Heat Transfer in a Vertical Channel Filled With Uniformly Heated Blocks(Begell House Inc., 2015) Çelik, Hasan; Mobedi, Moghtada; Mobedi, Moghtada; Manca,O.; Buonomo,B.; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe interfacial convective heat transfer coefficient of a periodic porous medium under mixed convection heat transfer is determined computationally by using volume averaging method. The porous medium consists of square blocks in inline arrangement. The continuity, momentum and energy equations are solved in dimensionless form for a representative elementary volume of porous medium and the velocity and temperature fields for different values of Richardson and Reynolds numbers are obtained. Based on the obtained results, the interfacial convective heat transfer coefficient is calculated by using volume average method. The temperature of the solid phase is considered uniform and different than the inlet temperature. A detailed discussion on the effect of the governing dimensionless parameters (i.e. Reynolds, Richardson numbers, and porosity) on the local and average interfacial Nusselt number is done. It is concluded that the local interfacial convective heat transfer coefficient increases with Reynolds number, however the rate of increase depends on Richardson number and porosity. The study is performed for two values of porosity of 0.51 and 0.94. © 2021, Begell House Inc. All rights reserved.Conference Object A Numerical Study on the Determination of the Effects of Pore To Throat Size Ratio on the Thermal Dispersion in Porous Media(Begell House, 2014) Özgümüş, Türküler; Mobedi, Moghtada; Mobedi, Moghtada; Özkol, Ünver; Özkol, Ünver; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyDirect pore-level numerical simulations are widely used to estimate macroscopic properties of fluid flow and heat transfer in porous media. Thermal dispersion is one of the most important macroscopic transport parameters for analyzing convective heat transfer in a porous medium. It should be known in order to predict the macroscopic temperature distribution. In the present study, a microscopic scale analysis is performed for a porous medium with periodic structure. A representative elementary volume is chosen from an infinite medium consists of rectangular rods in inline arrangement. The continuity and momentum equations are solved to obtain flow field and the energy equations for fluid and solid phases are solved to obtain microscopic temperature distributions in two phases. There are velocity and temperature deviations between macroscopic and microscopic local values. Volume averaging method is applied to the computed deviations and thermal dispersion conductivity of porous media is determined. The aim of this study is to analyze the effects of pore to throat size ratio on the longitudinal and transverse thermal dispersion in porous media. The study is performed for representative elementary volumes with different pore to throat size ratios and Reynolds numbers from 1 to 100. The study is performed for high porosity porous media (ε = 0.7 and 0.91). It is shown that the porosity and pore to throat size ratio have more influence on the transverse rather than longitudinal thermal dispersion. © 2014, Begell House Inc. All rights reserved.Book Part Citation - Scopus: 1A Historical Review of Polyhedral Linkages(Springer, 2024) Kiper, Gökhan; Kiper, Gökhan; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyPolyhedral linkages are linkages that resemble polyhedral shapes at different configurations. This paper summarizes the necessary geometrical fundamentals of polyhedral geometry and presents a historical and critical review of the polyhedral linkage designs available in the literature. Basic definitions of polyhedral geometry and operations are needed to comprehend and design polyhedral linkages. First, early works on polyhedral linkages are presented, where flexible polyhedra with rigid faces and flexible edges are issued. The final part is reserved to conformal polyhedral linkages, which go through shape transformations while plane, dihedral and solid angles are preserved. Conformal polyhedral linkages are examined in four categories: 1) Jitterbug-like linkages with screwing polygonal links connected to each other with dihedral angle preserving links, 2) polyhedral linkages with planar kinematic chains in radial motion planes, 3) polyhedral linkages with planar kinematic chains on faces, that are connected to each other with dihedral angle preserving links, and 4) other conformal polyhedral linkages. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.Article Citation - WoS: 2Citation - Scopus: 2A Continuously Variable Transmission-Based Variable Stiffness Actuator for Phri: Design Optimization and Performance Verification(American Society of Mechanical Engineers, 2024) Mobedi, Emir; Dede, Mehmet İsmet Can; Dede, Mehmet İsmet Can; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyPhysical human–robot interfaces (pHRIs) enabled the robots to work alongside the human workers complying with the regulations set for physical human–robot interaction systems. A variety of actuation systems named variable stiffness/impedance actuators (VSAs) are configured to be used in these systems’ design. Recently, we introduced a new continuously variable transmission (CVT) mechanism as an alternative solution in configuring VSAs for pHRI. The optimization of this CVT has significant importance to enhance its application area and to detect the limitations of the system. Thus, in this paper, we present a design optimization approach (an adjustment strategy) for this system based on the design goals, desired force, and minimization of the size of the system. To implement such design goals, the static force analysis of the CVT is performed and validated. Furthermore, the fabrication of the optimized prototype is presented, and the experimental verification is performed considering the requirements of VSAs: independent position and stiffness variation, and shock absorbing. Finally, the system is calibrated to display 6 N continuous output force throughout its transmission variation range. © 2024 by ASME.Conference Object Energy and Exergy Analysis of a Roof-Mounted Photovoltaic System in Gebze-Turkey(Springer, 2024) Khalejan, Seyed Hamed Pour Rahmati; Dede, Mehmet İsmet Can; Cankurt, Tolga; Dede, Mehmet İsmet Can; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThis study investigates the electrical and thermal exergy, power conversion efficiency and exergy efficiency of a roof-mounted photovoltaic (PV) system considering environmental parameters such as solar irradiation, ambient temperature and wind speed over a year. The values of solar exergy and solar potential are obtained by taking into account the solar insolation. Experimental and theoretical results indicate that wind speed and surface temperature have significant effects on the thermal exergy and exergy efficiency of solar PV systems. The mean solar potential in the region was found to be 93%. In addition, the electrical exergy was varied from 9145 W to 40460 W and the thermal exergy of PV systems was varied from 1639 W to 6193 W. While the range of PV power conversion efficiency varies from 6.15% to 11.56% over a year, the range of exergy efficiency varies from 5.31% to 9.78%. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.Article Citation - WoS: 5Citation - Scopus: 10The Design and Kinematic Representation of a Soft Robot in a Simulation Environment(Cambridge Univ Press, 2024) Emet, Hazal; Emet, Hazal; Gur, Berke; Dede, Mehmet İsmet Can; Dede, Mehmet Ismet Can; 01. Izmir Institute of Technology; 03.10. Department of Mechanical Engineering; 03. Faculty of EngineeringThe increase of human presence in the subsea and seabed environments necessitates the development of more capable and highly dexterous, innovative underwater manipulators. Biomimetic soft-robot arms represent a promising candidate for such manipulation systems. However, the well-known modeling techniques and control theories of traditional rigid robots do not apply to soft robots. The challenges of kinematic and dynamic modeling of soft robots with infinite degrees of freedom require the development of dedicated modeling methods. A novel procedure for representing soft-robotic arms and their motion in a rigid-body simulation environment is proposed in this paper. The proposed procedure relies on the piecewise constant curvature approach to simplify the very complex model of hyper-redundant soft-robotic arms, making it suitable for real-time applications. The proposed method is implemented and verified to be used in model-mediated teleoperation of the soft arms of a biomimetic robotic squid designed for underwater manipulation as a case study.Conference Object Citation - Scopus: 3Four-bar function generation using excel solver(Springer, 2023) Söylemez, Eres; Kiper, Gökhan; Kiper, Gökhan; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe Chapter presents a simple and efficient way of approximating a function with a four-bar mechanism using four or five design parameters including one or both of the initial crank angles. The method only involves solution of linear set of equations and evaluating determinants, whereas nonlinear equations are numerically solved using a simple program such as Excel. So, the method is easy to explain and can be taught in an undergraduate course along with the wellknown linear three precision point synthesis problem. Precision point synthesis, order synthesis, mixed order synthesis, least squares approximation and extreme point synthesis can all be treated using the same method. The proposed method is illustrated with numerical examples for all mentioned synthesis problems and shown to be quite efficient with very low amount of structural error values.Article Citation - WoS: 12Citation - Scopus: 14Cold Plate Enabling Air and Liquid Cooling Simultaneously: Experimental Study for Battery Pack Thermal Management and Electronic Cooling(Elsevier, 2023) Coşkun, Turgay; Çetkin, Erdal; Çetkin, Erdal; Coşkun, Turgay; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe temperature of cells varies greatly during dis/charge while their performance and lifetime are greatly affected by this fluctuation. Elevated temperatures may yield battery fire due to thermal runaway as well they accelerate ageing and capacity fade of cells. Thermal management systems are a necessity for electric vehicles to extend the lifetime of battery cells and eliminate any fire risks, especially for fast dis/charging applications. Here, we document a hybrid cold plate with a working fluid(s) of sole air or liquid as well as both of them. Hybridization of air and liquid cooling promises to minimize energy consumption requirements during a charge/ discharge cycle by combining the benefits of both thermal management strategies if energy management is controlled accordingly. The temperature of each cell can be kept below 30 degrees C with the proposed hybrid cooling heat exchanger, and the temperature difference between the cells is reduced by 30 % relative to liquid cooling. The maximum temperatures are decreased by 18 % and 3 % in hybrid cooling when compared to air and water cooling, respectively. Furthermore, a step function combining various discharge rates (1C and 3C) was employed in experiments to mimic a realistic situation, i.e. variable C-rate rather than constant. The results show that the temperature of the battery cells can be kept below 30 degrees C with air cooling for variable discharge rate and the effect of contact resistance should not be overlooked for liquid cooling. Furthermore, the possible use of the proposed hybrid cold plates is surveyed in the cooling of electronic devices which produce more and continuous heat than cells. Therefore, three resistance heaters with a capacity of 50W are used in experiments as well. The results show that the proposed cold plates could be used in both electronics cooling and battery thermal management with a control algorithm to switch between sole working fluid and combination modes which could be developed based on the results of this paper.Article Citation - WoS: 2Citation - Scopus: 2Design and Manufacturing of a Hip Joint Motion Simulator With a Novel Modular Design Approach(Springer, 2023) Torabnia, Shams; Mihçin, Şenay; Mihçin, Şenay; Lazoğlu, İsmail; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe study is aimed to develop a hip joint wear simulator using a modular design approach to help experimentally monitor and control critical wear parameters to validate in-silico wear models. The proper control and application of wear parameters such as the range of motion, and the applied force values while estimating the lost material due to wear are essential for thorough analysis of wear phenomena for artificial joints. The simulator's dynamics were first modeled, then dynamic loading data was used to calculate the forces, which were further used for topology optimization to reduce the forces acting on each joint. The reduction of the link weights, connected to the actuators, intends to improve the quality of motion transferred to the femoral head. The modular design approach enables topology-optimized geometry, associated gravitational and dynamic forces, resulting in a cost-effective, energy-efficient product. Moreover, this design allows integration of the subject specific data by allowing different boundary conditions following the requirements of industry 5.0. Overall, the in-vitro motion stimulations of the hip-joint prosthesis and the modular design approach used in the study might help improve the accuracy and the effectiveness of wear simulations, which could lead into the development of better and longer-lasting joint prostheses for all. The subject-specific and society-based daily life data implemented as boundary conditions enable inclusion of the personalized effects. Next, with the results of the simulator, CEN Workshop Agreement (CWA) application is intended to cover the personalized effects for previously excluded populations, providing solution to inclusive design for all.Article Citation - WoS: 3Citation - Scopus: 3Investigation and Validation of the Flow Stress Equation and Damage Model Parameters of an Electron Beam Melted Ti6al4v Alloy With a Martensitic Phase(Elsevier, 2023) Güden, Mustafa; Hızlı, Burak; Bin Riaz, Arslan; Güden, Mustafa; Toksoy, Ahmet Kaan; Yıldıztekin, Murat; Erten, Hacer İrem; Çimen, Gülden; Hızlı, Burak; 01. Izmir Institute of Technology; 03.10. Department of Mechanical Engineering; 03. Faculty of EngineeringThe Johnson and Cook flow stress and damage model parameters of an electron beam melt (EBM)-Ti64 alloy composed of & alpha;' (martensite) and & alpha;+& beta; and an extruded-annealed conventional Ti64 alloy were determined experimentally. The validities of the determined flow stress equations and damage model parameters were then verified by the numerical simulations of the compression tests on the Body Centered Cubic lattices produced using the same EBM parameters with the solid EBM samples. In addition, a compression flow stress equation was extracted from the small-size test specimens (1 and 2 mm diameter) taken directly from the struts of the as-built lattices. The microscopic observations, XRD analyses and hardness tests confirmed the presence of & alpha;& PRIME; phase in the EBM solid samples and in the struts of the BCC lattices, which reduced the ductility of the EBM solid specimens and struts compared to the conventional Ti64. Furthermore, the partially melt particles on the surfaces of the struts acted as the stress concentration sides for micro-cracking; hence, the compression flow stresses of the struts were found to be significantly lower than those of the as-built EBM solid specimens. The flow stress equation derived from the struts predicted more accurately the compression behavior of the lattices. The compression tests and models showed that early damage formation in the lattices was noted to decrease the initial peak and post peak stresses. As with the experiments, the initial damage occurred in the models with the separation of the nodes at the lattice cell surface edges. This resulted in an abrupt reduction in the stresses after the peak stress. The numerical lattices without damage showed a localized lattice deformation at the mid-sections and the stress increased continuously as a function of normal strain.Article Citation - WoS: 4Citation - Scopus: 5Investigating the Effects of Pa66 Electrospun Nanofibers Layered Within an Adhesive Composite Joint Fabricated Under Autoclave Curing(American Chemical Society, 2023) Esenoğlu, Gözde; Barışık, Murat; Tanoğlu, Metin; Aktaş, Engin; Barışık, Murat; Tanoğlu, Metin; İplikçi, Hande; Esenoğlu, Gözde; Yeke, Melisa; Nuhoğlu, Kaan; Türkdoğan, Ceren; Martin, Seçkin; Aktaş, Engin; Dehneliler, Serkan; Gürbüz, Ahmet Ayberk; İriş, Mehmet Erdem; 03.10. Department of Mechanical Engineering; 03.03. Department of Civil Engineering; 01. Izmir Institute of Technology; 03. Faculty of EngineeringEnhancing the performance of adhesively joined composite components is crucial for various industrial applications. In this study, polyamide 66 (PA66) nanofibers produced by electrospinning were coated on unidirectional carbon/epoxy prepregs to increase the bond strength of the composites. Carbon/epoxy prepregs with/without PA66 nanofiber coating on the bonding region were fabricated using the autoclave, which is often used in the aerospace industry. The single lap shear Charpy impact energy and Mode-I fracture toughness tests were employed to examine the effects of PA66 nanofibers on the mechanical properties of the joint region. Scanning electron microscopy (SEM) was used to investigate the nanofiber morphology and fracture modes. The thermal characteristics of Polyamide 66 nanofibers were explored by using differential scanning calorimetry (DSC). We observed that the electrospun PA66 nanofiber coating on the prepreg surfaces substantially improves the joint strength. Results revealed that the single lap shear and Charpy impact strength values of the composite joint are increased by about 79 and 24%, respectively, by coating PA66 nanofibers onto the joining region. The results also showed that by coating PA66 nanofibers, the Mode-I fracture toughness value was improved by about 107% while the glass transition temperature remained constant.Article Yüksek Derecede Kurum Üreten 2b Gazyağı/hava Difüzyon Alevleri Üzerinde Diferansiyel Yayılımın ve Basıncın Etkileri(Gazi Üniversitesi, 2024) Korucu, Ayşe; Korucu, Ayşe; Miller, Richard; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyBu çalısmada, dört farklı ortam basıncında kurum, oluşum ve yıkım süreçlerini incelemek amacıyla, yoğun kurum üreten Gazyağı/Hava alevleri, gerçek gaz (GG) ve ideal gaz (İG) hal denklemleri ve Lewis (Le) sayısının bir olarak kabul edildiği modeller ele alınmıştır. Yarı-genel kurum oluşum ve yıkım modelini içeren indirgenmiş Gazyağı/Hava mekanizması (29-adım, 10 çeşit gaz) 2 boyutlu (2B) Direk Sayısal Simülasyon (DNS) verilerini oluşturmak için MPI FORTRAN ile kodu yazılmış bir program kullanılmıştır. Le sayısının bire eşit kabul edildiği alev tahminlerinin, Le sayısının bire eşit olmadığı (genelleştirilmiş difüzyon) durumların sayısal sonuçlarından elde edilen alev yapısı ve kurum özelliklerinin istatiksel olarak benzerlik sağlayıp sağlamadığı araştırılmıştır. Bu bağlamda yapılan çalışmanın sonucunda, ortam basınçları 1, 5, 10 ve 35 atm olan Le sayısının bir olarak kabul edildiği GGLE ve İGLE modelleri ile üretilmiş 2B DNS alev tahminlerinin kurum özelliklerinin ve alev yapılarının yanlış hesaplanmasına yol açtığı belirlenmiştir.Article Citation - WoS: 11Citation - Scopus: 12Influence of Recycled Carbon Fiber Addition on the Microstructure and Creep Response of Extruded Az91 Magnesium Alloy(KeAi Communications Co., 2023) Kandemir, Sinan; Kandemir, Sinan; Bohlen, Jan; Dieringa, Hajo; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn this study, the recycled short carbon fiber (CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion. The objective was to investigate the impact of CF content (2.5 and 5.0 wt.%) and fiber length (100 and 500 µm) on the microstructure, mechanical properties, and creep behavior of AZ91 alloy matrix. The microstructural analysis revealed that the CFs aligned in the extrusion direction resulted in grain and intermetallic refinement within the alloy. In comparison to the unreinforced AZ91 alloy, the composites with 2.5 wt.% CF exhibited an increase in hardness by 16–20% and yield strength by 5–15%, depending on the fiber length, while experiencing a reduction in ductility. When the reinforcement content was increased from 2.5 to 5.0 wt.%, strength values exhibited fluctuations and decline, accompanied by decreased ductility. These divergent outcomes were discussed in relation to fiber length, clustering tendency due to higher reinforcement content, and the presence of interfacial products with micro-cracks at the CF-matrix interface. Tensile creep tests indicated that CFs did not enhance the creep resistance of extruded AZ91 alloy, suggesting that grain boundary sliding is likely the dominant deformation mechanism during creep. © 2023Review Citation - WoS: 10Citation - Scopus: 11A Review on Battery Thermal Management Strategies in Lithium-Ion and Post-Lithium Batteries for Electric Vehicles(Yıldız Technical University, 2023) Güngör, Şahin; Göçmen, Sinan; Göçmen, Sinan; Güngör, Şahin; Çetkin, Erdal; Çetkin, Erdal; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyElectrification on transportation and electricity generation via renewable sources play a vital role to diminish the effects of energy usage on the environment. Transition from the conven- tional fuels to renewables for transportation and electricity generation demands the storage of electricity in great capacities with desired power densities and relatively high C-rate values. Yet, thermal and electrical characteristics vary greatly depending on the chemistry and struc- ture of battery cells. At this point, lithium-ion (Li-ion) batteries are more suitable in most applications due to their superiorities such as long lifetime, high recyclability, and capacities. However, exothermic electrochemical reactions yield temperature to increase suddenly which affects the degradation in cells, ageing, and electrochemical reaction kinetics. Therefore, strict temperature control increases battery lifetime and eliminates undesired situations such as lay- er degradation and thermal runaway. In the literature, there are many distinct battery thermal management strategies to effectively control battery cell temperatures. These strategies vary based on the geometrical form, size, capacity, and chemistry of the battery cells. Here, we focus on proposed battery thermal management strategies and current applications in the electric vehicle (EV) industry. In this review, various battery thermal management strategies are doc- umented and compared in detail with respect to geometry, thermal uniformity, coolant type and heat transfer methodology for Li-ion and post-lithium batteries.