Energy Systems Engineering / Enerji Sistemleri Mühendisliği
Permanent URI for this collectionhttps://hdl.handle.net/11147/4752
Browse
Recent Submissions
Review Citation - Scopus: 2A Comparative Evaluation of Dark Fermentative Bioreactor Configurations for Enhanced Hydrogen Production(Springer, 2025) Gören, Ayşegül Yağmur; Gören, Ayşegül Yağmur; Dincer, I.; Khalvati, A.; 03.07. Department of Environmental Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyEnergy from renewable resources has been growing in popularity, which ultimately helps reduce emissions of greenhouse gases (GHGs) and contaminants. Since hydrogen (H2) has a higher combustion production of energy than hydrocarbon fuels, it has been identified as a clean, sustainable, and environmentally friendly energy source. There are several benefits to producing biohydrogen (bioH2) from renewable sources, including lower cost and increased sustainability. Among the bioH2 production processes, dark fermentation supports commercialization and scale-up for industrial applications. This paper considers the various bioreactors, such as anaerobic sequencing batch, continuous stirred, up-flow, fixed-bed, and membrane reactors, and their operational approaches for bioH2 production. This review paper also performs the bibliometric analysis method to identify historical and current developments in a particular field of reactor configuration studies. Furthermore, the main variables influencing reactor performance and methods for increasing process efficiency considering economic and environmental aspects are addressed. The results revealed that continuously stirred reactors are widely utilized for bioH2 production as a cost-effective reactor configuration. Moreover, the membrane bioreactors and fixed-bed reactors are yielded higher bioH2 performance than other configurations. Nevertheless, high energy consumption and costs have presented the need for further development of reactors. Consequently, future recommendations to solve the critical problems faced in reactor configurations, the gaps in the literature, and the points that need improvement were comprehensively reported. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.Article Citation - Scopus: 1Bayesian Uncertainty Quantification in Temperature Simulation of Borehole Heat Exchanger Fields for Geothermal Energy Supply(Elsevier Ltd, 2025) Soltan Mohammadi, H.; Erol, Selçuk; Ringel, L.M.; Bott, C.; Erol, Selçuk; Bayer, P.; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyAccurate temperature prediction is crucial for optimizing the performance of borehole heat exchanger (BHE) fields. This study introduces an efficient Bayesian approach for improving the forecast of temperature changes in the ground caused by the operation of BHEs. The framework addresses the complexities of multi-layer subsurface structures and groundwater flow. By utilizing an affine invariant ensemble sampler, the framework estimates the distribution of key parameters, including heat extraction rate, thermal conductivity, and Darcy velocity. Validation of the proposed methodology is conducted through a synthetic case involving four active and one inactive BHE over five years, using monthly temperature changes around BHEs from a detailed numerical model as a reference. The moving finite line source model with anisotropy is employed as the forward model for efficient temperature approximations. Applying the proposed methodology at a monthly resolution for less than three years reduces uncertainty in long-term predictions by over 90%. Additionally, it enhances the applicability of the employed analytical forward model in real field conditions. Thus, this advancement offers a robust tool for stochastic prediction of thermal behavior and decision-making in BHE systems, particularly in scenarios with complex subsurface conditions and limited prior knowledge. © 2024 The Author(s)Article Citation - WoS: 4Citation - Scopus: 4Effect of external electric field on fluidization of rodlike particles using CFD-DEM(American Chemical Society, 2024) Kazemi, Saman; Zarghami, Reza; Aali, Hamed; Larijani, Roxana Saghafian; Zarghami, Reza; Liu, Helei; Mostoufi, Navid; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyGiven the significant impact of an external electric field on fluidized bed hydrodynamics and the practical importance of rodlike particles, this study examines the behavior of a fluidized bed containing rodlike particles under various external electric fields. Simulations were performed using a coupled computational fluid dynamics-discrete element method, and rodlike particles were generated using a multisphere approach aided by quaternions. The effect of different vertical and horizontal external electric fields on the orientation of particles was investigated. Also, the effect of particle size on their orientation in the presence of constant vertical and horizontal external electric fields was explored in this work. The results showed that increasing the electric field strength and reducing the size of rodlike particles lead to an increment in the tendency of particles to become oriented along the direction of the electric field. Moreover, the effect of the external electric field at various inlet gas velocities on the probability distribution of the porosity in the bed was studied. Finally, the effect of vertical and horizontal electric fields on the bubble diameter was examined. This study offers a deeper understanding of the fluidization of rodlike particles in the presence of an electric field, and its findings can be applied to design and optimize related processes.Article Stochastic 1-D Reactive Transport Simulations To Assess Silica and Carbonate Phases During the $co_2$ Reinjection Process in Metasediments(TÜBİTAK - Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, 2024) Erol, Selçuk; Erol, Selçuk; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyOne proposed method to mitigate carbon emission is to mineralize the $CO_2$ in deep geothermal reservoirs while mixing the coproduced CO2 with the effluent fluid for reinjection. The injection fluid temperature fluctuates due to the mixing process between CO2-charged water and the effluent fluid, and compressor interruptions change the thermodynamic conditions that influence the fluid- rock interaction in the reservoir. Mineral dissolution or precipitations are associated with changes in permeability and porosity that affect the flow and, eventually, the lifespan of the reservoir. A combined stochastic–reactive transport simulation approach is useful for inspection purposes. Moreover, the stochastic algorithm validates the deterministic reactive transport simulation and demonstrates the time evolution of a chemically reacting system in the reservoir. This study examines a range of injection temperatures between 80 °C and 120 °C to evaluate silica and calcite precipitation along a flow path. One-dimensional (1-D) reactive transport and compartment- based stochastic reaction-diffusion-advection Gillespie algorithms are carried out. The 1-D model represents a reservoir feed zone of around 2300 m. Two common metasediment rock types are evaluated for inspection. The first one is the muscovite schist, which has approximately 60% quartz, and the second is the quartz schist, consisting of roughly 90% quartz. The stochastic method can be applied more effectively if the chemical system is completely defined with proper reaction rates as a function of temperature. The mixing ratio of the coproduced $CO_2$ over the effluent fluid is around 0.0028. Simulation results show that $CO_2$ is partially sequestrated as calcite within the first 10 m of the entrance to the reservoir and plugs the pores completely in the muscovite schist scenario. Chalcedony and α-cristobalite precipitate as secondary minerals evenly along the flow path. $CO_2$ injection into a quartz schist layer is more appropriate for geochemical interactions below 120 °C.Article Citation - WoS: 13Citation - Scopus: 17A Gis-Based Fahp and Fedas Analysis Framework for Suitable Site Selection of a Hybrid Offshore Wind and Solar Power Plant(Elsevier B.V., 2023) Karipoğlu, Fatih; Karipoğlu, Fatih; Ozturk, S.; Efe, B.; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThis study presents a Geographic Information System (GIS) based suitable site selection methodology for a hybrid system that includes offshore wind and solar PV. The methodology utilizes open source databases about decision criteria and applies this data using GIS to determine suitable sites for offshore wind and solar PV systems. For the assessment of multi-criteria which affect the potential hybrid energy power plants and the determination of the best suitable areas, Fuzzy Analytical Hierarchy Process (FAHP) and Fuzzy Evaluation based on Distance Average Solution (FEDAS) are used in the study. Results show that technical criteria has the priority weight of 0.60 while the weight of social criteria is about 0.07. Among sub-criteria, the wind speed has the highest priority weight while distance to port and visibility are the highest criteria of priority weight under economic and social main criteria, respectively. Among the alternatives, Area 2 (A-2) is determined as the best alternative for hybrid offshore power plants in the study area. This proposed methodology can be utilized by decision-makers to determine the best suitable locations for hybrid offshore wind and solar PV systems at any location. This paper suggests a new approach integrating GIS, fuzzy setbased AHP and EDAS as a novelty. © 2023 International Energy InitiativeArticle Citation - WoS: 19Citation - Scopus: 22Design, Evaluation, and Optimization of an Integrated Proton Exchange Membrane and Double Flash Geothermal Based Organic Rankine Cycle Multi-Generation System Fed by a Biomass-Fueled Gasifier(Elsevier, 2024) Taheri, Muhammad Hadi; Mohammadpourfard, Mousa; Seker, Utku; Gökçen Akkurt, Gülden; Akkurt, Gulden Gokcen; Mohammadpourfard, Mousa; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThis study introduces an innovative approach by formulating and evaluating a synergistic biomass-geothermal structure, emphasizing optimized inter-component connections. The research stands out for its thorough analysis of parameter impacts on the system and variables, addressing an unexplored aspect in integrated energy systems. The multi-generation systems are the integration of a combined gasification gas turbine cycle, double flash geothermal cycle, and proton exchange membrane cycle for the generating power and hydrogen. The overall system and its subsystems are studied to explore how the performance of thermodynamics and the total cost rate are influenced by operating parameters. The best operational conditions for both subsystems and the overall system have been determined by analyzing the impact of operating parameters on the thermodynamic behavior and environmental impact through parametric studies. The findings indicate while Sabalan's current efficiency is 16.26 %, the system energy efficiency reached 24.89 % when coupled with other renewable source. To enhance the system's efficiency, a genetics algorithm was utilized to simultaneously optimize the total cost of exergy destruction and investment cost. The outcome of the multi-objective optimization revealed that the exergy efficiency of optimal point for the system is 29.8 % and a total investment cost is 6 (M$/year).Erratum Author Correction: the Influence of Nano Filter Elements on Pressure Drop and Pollutant Elimination Efficiency in Town Border Stations(Nature Research, 2023) Heris, S.Z.; Mohammadpourfard, Mousa; Ebadiyan, H.; Mousavi, S.B.; Nami, S.H.; Mohammadpourfard, Mousa; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe original version of this Article contained an error in the order of the author names, which was incorrectly given as Hamed Ebadiyan, Saeed Zeinali Heris, Seyed Borhan Mousavi, Shamin Hosseini Nami & Mousa Mohammadpourfard. Consequently, in the Author Contributions section, “H.E. Investigation. S.Z.H. Supervision, Conceptualization, Methodology, Validation. S.B.M. Formal analysis, Writing original draft. S.H.N. Formal analysis, Writing original draft. M.M. Validation.” now reads: “S.Z.H. Supervision, Conceptualization, Methodology, Validation. H.E. Investigation. S.B.M. Formal analysis, Writing original draft. S.H.N. Formal analysis, Writing original draft. M.M. Validation.” The original Article has been corrected. © 2023, The Author(s).Conference Object Citation - Scopus: 2Co2 Capture by Pei-Impregnated Alumina Sorbents(ISRES Publishing, 2023) Turgut, Furkan; Çağlar, Başar; Kostik, Simge; Erdoğan, Barış; Çağlar, Başar; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyDirect air capture (DAC) or direct CO2 extraction from ambient air is a promising approach to reduce greenhouse gas emissions caused by both distributed (location independent) and point sources (location specific). Solid sorbents have been considered as more effective for DAC compared to the liquid counterpart since they have a faster kinetic and avoid volatile and heat losses due to the absence of evaporation of liquids. In this study, the alumina-supported polyethyleneimine (PEI) material was chosen as solid sorbents and their CO2 capture performance for different PEI loadings (20, 35, 50 wt%), flow rate (15, 30, 45 L/h) and adsorption temperatures (30, 40, 50, 60 °C) was investigated. Sorbents were prepared by using wetness impregnation method and their physical and chemical properties were characterized by several techniques such as N2 adsorption-desorption (surface area, pore size and volume), Scanning Electron Microscopy-SEM (surface morphology, surface chemical composition). The CO2 capture performance of sorbents were analyzed under different CO2 concentrations and the cyclic (adsorption-desorption) behavior of the sorbents were tested. The results show that alumina-supported PEI adsorbents are promising materials for CO2 capture with high CO2 adsorption capacity and stability. © 2023 Published by ISRES.Article Citation - WoS: 5Citation - Scopus: 5Exergetic Assessment of an Solar Powered Stand-Alone System Using Liquid Organic Hydrogen Carrier for Energy Storage(Elsevier, 2023) Palmero-Marrero, Ana I.; Çağlar, Başar; Zairov, Rüstem; Borge-Diez, David; Çağlar, Başar; Açıkkalp, Emin; Altuntaş, Önder; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe integration of energy storage technologies into renewable energy systems has gained increasing attention for continuous supply of the renewable-based enegy. Among different storage alternatives, the use of a Liquid Organic Hydrogen Carrier (LOHC) has a significant potential as a reversible energy carrier for short and longterm energy storage. In this study, the technical and economic performance of an stand-alone renewable energy systems using a LOHC for energy storage have been evaluated by exergy-based methods in addition to simple energy and economic analysis. The analysis of the LOHC-free system was also included to determine the effect of LOHC on the system performance. The system containing phovoltaic (PV) panels, an electrolyzer, a micro gas turbine and hydrogenation/dehydrogenation LOHC units was designed to meet the power, heating and cooling requirement of a residential building. The system modelling and performance evaluation were made by using TRNSYS and EES softwares. Results show that the LOHC-containing system has higher energy and exergy efficiencies and exergoeconomic performance than the LOHC-free system while the latter is economically more feasible than the former due to its low capital investment cost.Article Citation - WoS: 12Citation - Scopus: 13Integration of Psychological Parameters Into a Thermal Sensation Prediction Model for Intelligent Control of the Hvac Systems(Elsevier, 2023) Turhan, Cihan; Turhan, Cihan; Özbey, Mehmet Furkan; Gökçen Akkurt, Gülden; Lotfi, Bahram; Gökçen Akkurt, Gülden; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyConventional thermal comfort models take physiological parameters into account on thermal comfort models. On the other hand, psychological behaviors are also proven as a vital parameter which affects the thermal sensation. In the literature, limited studies which combine both physiological and psychological parameters on the thermal sensation models are exist. To this aim, this study develops a novel Thermal Sensation Prediction Model (TSPM) in order to control the HVAC system by considering both parameters. A data-driven TSPM, which includes Fuzzy Logic (FL) model, is developed and coded using Phyton language by the authors. Two physiological parameters (Mean Radiant Temperature and External Temperature) and one psychological parameter (Emotional Intensity Score (EIS) including Vigour, Depression, Tension with total of 32 subscales) are selected as inputs of the model. Besides the physiological parameters which are decided intentionally considering a manual ventilated building property, the most influencing three sub- psychological parameters on thermal sensation are also selected in the study. While the physiological parameters are measured via environmental data loggers, the psychological parameters are collected simultaneously by the Profile of Mood States questionnaire. A total of 1159 students are participated to the questionnaire at a university study hall between 15th of August 2021 and 15th of September 2022. The results showed that the novel model predicted Thermal Sensation Vote (TSV) with an accuracy of 0.92 of R2. The output of this study may help to develop an integrated Heating Ventilating and Air Conditioning (HVAC) system with Artificial Intelligence – enabled Emulators that also includes psychological parameters. © 2023 Elsevier B.V.Article Citation - WoS: 3Citation - Scopus: 5Design, Thermodynamic and Economic Evaluation, and Optimization of Gasoline Production From Refinery Furnaces Flue Gas(Elsevier, 2023) Nazerifard, Reza; Mohammadpourfard, Mousa; Mohammadpourfard, Mousa; Heris, Saeed Zeinali; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn this paper, the conversion of refinery furnaces’ flue gas into gasoline through the MTG process is investigated. This approach not only reduces greenhouse gas emissions, but also produces a high-value product, providing economic incentives to adopt this technology. The proposed integrated system comprises an organic Rankine cycle, an amine-based carbon capture unit, a methanol synthesis unit, and an MTG unit. In this study, we evaluated the technical and economic aspects of this conversion process, including the thermodynamic and cost analysis, to assess its viability as a sustainable solution for mitigating CO2 emissions from refineries. Also, using response surface methodology combined with the Box-Behnken design, the proposed integrated system was optimized to minimize the gasoline production cost. The thermodynamic assessment concludes that the energy and exergy efficiencies of the overall system are 73.12% and 85.24%, respectively. The proposed system yields an annual gasoline production rate of >184 million liters. The estimated total capital investment for the proposed system is 172.16 M$, which the methanol synthesis unit with a share of 48.65% is the most expensive one. The results give a gasoline production cost of 1.58 $/kg or 4.28 $/gal for the optimized case. Also, hydrogen has the highest contribution in the production cost, so with a 20% decrease in the price of hydrogen, the production cost of gasoline decreases by 18.71%. With this rate of technological improvement, reductions in the price of hydrogen seem inevitable in not-so-distant years, which makes the proposed system of converting refinery furnaces’ flue gas into gasoline became desirable. © 2023 Elsevier LtdReview Citation - WoS: 16Citation - Scopus: 19A Comprehensive Review of Computational Fluid Dynamics Simulation Studies in Phase Change Materials: Applications, Materials, and Geometries(Springer, 2023) Soodmand, A. Mohammadian; Mohammadpourfard, Mousa; Azimi, B.; Nejatbakhsh, S.; Pourpasha, H.; Farshchi, M. Ebrahimi; Aghdasinia, H.; Mohammadpourfard, Mousa; Heris, S. Zeinali; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThermal energy storage systems (TESS) have emerged as significant global concerns in the design and optimization of devices and processes aimed at maximizing energy utilization, minimizing energy loss, and reducing dependence on fossil fuel energy for both environmental and economic reasons. Phase change materials (PCMs) are widely recognized as promising candidates due to their high latent heat storage (LHS) capacity. This review thoroughly evaluates the computational fluid dynamics (CFD) studies conducted in various sections, encompassing materials, modeling, simulation, as well as the results, advantages, and disadvantages of these works. The study is organized into three distinct sections. The first section discusses the applications of PCMs in various areas, including lithium-ion batteries, solar applications, building applications, electronics, and heating and cooling systems. The second section provides a comprehensive summary of cylindrical, rectangular, spherical, arbitrary shapes, and packed-bed geometries employed in TESS. The third section investigates the different types of materials used as PCMs. Based on the findings of this study, it can be concluded that industrial applications of hybrid nanocomposites incorporating PCMs in different geometries pose challenges, particularly in three-dimensional (3D) settings, where instability becomes a significant concern. Hence, further research and investigation are necessary to address these challenges adequately. In conclusion, this study serves as a reference review for future research endeavors in the field of simulating various PCMs in different geometries and applications. It provides valuable insights into the current state of knowledge, highlights potential areas for improvement, and offers guidance for advancing simulation techniques related to PCMs.Article Citation - WoS: 1Citation - Scopus: 1Experimental Investigation of Naca 4415 Airfoil Using Vibration Data for Stall Detection(Emerald Group Publishing, 2023) Ayaz Ümütlü, Hatice Cansu; Karadeniz, Ziya Haktan; Kıral, Zeki; Karadeniz, Ziya Haktan; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyPurposeThe purpose of this study is to identify the possible relation between the vibration and the stall by using the vibration response of the airfoil. For this purpose, the root mean square values of the acceleration signals are evaluated to demonstrate the compatibility between the stall angles and the vibration levels. Design/methodology/approachAn experimental study is conducted on NACA 4415 airfoil at Reynolds numbers 69e3, 77e3 and 85e3. Experiments are performed from 0 & DEG; to 25 & DEG; of the angles of attack (AoA) for each Reynolds number condition. To observe the change of the vibration values at the stall region clearly, experiments are performed with the AoA ranging from 10 & DEG; to 25 & DEG; in 1 & DEG; increments. Three acceleration sensors are used to obtain the vibration data. FindingsThe results show that the increase in the amplitude of the vibration is directly related to the decrease in lift. These findings indicate that this approach could be beneficial in detecting stall on airfoil-type structures. Originality/valueThis study proposes a new approach for detecting stall over the airfoil using the vibration data.Article Citation - WoS: 26Citation - Scopus: 27A Novel Data-Driven Model for the Effect of Mood State on Thermal Sensation(MDPI, 2023) Turhan, Cihan; Gökçen Akkurt, Gülden; Özbey, Mehmet Furkan; Turhan, Cihan; Ceter, Aydın Ege; Gökçen Akkurt, Gülden; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThermal comfort has an important role in human life, considering that people spend most of their lives in indoor environments. However, the necessity of ensuring the thermal comfort of these people presents an important problem, calculating the thermal comfort accurately. The assessment of thermal comfort has always been problematic, from past to present, and the studies conducted in this field have indicated that there is a gap between thermal comfort and thermal sensation. Although recent studies have shown an effort to take human psychology into account more extensively, these studies just focused on the physiological responses of the human body under psychological disturbances. On the other hand, the mood state of people is one of the most significant parameters of human psychology. Thus, this paper investigated the effect of occupants' mood states on thermal sensation; furthermore, it introduced a novel Mood State Correction Factor (MSCF) to the existing thermal comfort model. To this aim, experiments were conducted at a mixed-mode building in a university between 15 August 2021 and 15 August 2022. Actual Mean Vote (AMV) and Profile of Mood States (POMS) were used to examine the effect of mood state on thermal sensation. The outcomes of this study showed that in the mood states of very pessimistic and very optimistic, the occupants felt warmer than the calculated one and the MSCFs are calculated as -0.125 and -0.114 for the very pessimistic and very optimistic mood states, respectively. It is worth our time to note that the experiments in this study were conducted during the COVID-19 Global Pandemic and the results of this study could differ in different cultural backgrounds.Article Eşli çalışan düşey eksenli türbin performansının iki boyutlu benzetimi(2023) Akgül, Ufuk; Karadeniz, Ziya Haktan; Kökey, İskender; Turgut, Alpaslan; Karadeniz, Ziya Haktan; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyRüzgar enerji santralindeki (RES) türbinlerin birbirine göre konumları oldukça önemlidir. Bu açıdan önemli hususlardan biri de, birbirine yakın konumda çalışan iki düşey eksenli türbinin (DERT) birbirlerinin performansına olan etkisidir. Literatürde gösterilmiş olan, birlikte çalışan DERT’lerin performansındaki yükselişin nedenlerinin araştırılması gerekmektedir. Saha testlerinde rüzgâr hızlarının tam olarak kontrol edilememesi ve düşey eksenli türbinin kanat dışındaki yapısal elemanlarının akış bozucu etkisi olması, problemin daha basit haliyle, iki boyutlu bilgisayar benzetimi yöntemiyle incelenmesini zorunlu kılmıştır. Bu amaçla çalışma kapsamında, düşey eksenli türbinin akışı bozacak parçalarını ihmal ederek, farklı merkezler arası uzaklığa (1,5, 2, 2,5 ve 4) sahip eşli çalışan iki türbinin performansının farklı uç hız oranlarında (0,5, 1, 1,5, 2, 2,5 ve 3 uç hız oranı) tek çalışan türbine göre nasıl değiştiği iki boyutlu bilgisayar benzetimleriyle incelenmiştir. Eşli çalışma durumunda türbin performansının tek çalışmaya göre %26 yükseldiği görülmüştür. Bu yükselişin ana etkeninin blokaj etkisi olduğu, yanal hızların ve iki türbin ara bölgesinde hızlanan akış gibi etkilerin ise daha az olduğu saptanmıştır.Article Citation - WoS: 7Citation - Scopus: 8Update for Reactive Transport Modeling of the Kızıldere Geothermal Field To Reduce Uncertainties in the Early Inspections(TÜBİTAK - Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, 2023) Erol, Selçuk; Erol, Selçuk; Akın, Taylan; Akın, Serhat; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe development of carbon capture and storage techniques has become essential to reduce and mitigating CO2 emissions to the atmosphere. CarbFix1 and CarbFix2 projects carried out in Iceland demonstrated that the emissions of waste CO2 gas from geothermal power plants can be captured and mixed with the effluent geofluid and subsequently injected back into the geothermal reservoir. This experience gained in the CarbFix projects expanded into other geothermal fields around Europe, and one of the demonstration sites is the geothermal field in Turkey, Kızıldere. This paper focuses on the results of an updated study on early field evaluations with reactive transport simulations. In the new three-dimensional numerical model, the geological formations and fault zones were updated according to the well-logs data. Based on the tracer tests performed in the field, the anisotropic permeabilities between the wells were evaluated and imposed into the model. Geofluid chemistry, mineral components, and the volume fractions used as input in the simulations are modified depending on the performed laboratory experiments on the metamorphic schists taken from the geothermal site (i.e. X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning-electron microscope (SEM), and batch reactor tests). Different thermodynamic databases such as Lawrance Livermore National Laboratory (LLNL) and Thermoddem databases were tested using PHREEQC and TOUGHREACT programs for consistency with experiments. The thermodynamic conditions and the geofluid-rock-CO2 interactions prevent the mineralization of CO2 in the reservoir. This outcome differs from CarbFix projects in terms of the carbonization process, but the CO2 injection is still reliable with solubility-trapping in a geothermal reservoir to partially mitigate the emission. Roughly, 200 kt of CO2 in 10 years can be safely injected into the geothermal reservoir. According to the new analysis, the ratio of magnesium, sodium, and potassium varies in solid solution series of feldspars and clay minerals as albite end-member and montmorillonite/illite end-members, respectively. The evaluations of solid solution reactions are relatively limited in the law of mass action approach used by PHREEQC and TOUGHREACT. © TÜBİTAK.Article Citation - WoS: 84Citation - Scopus: 94Preparation and Characterizations of Tio2/Zno Nanohybrid and Its Application in Photocatalytic Degradation of Tetracycline in Wastewater(Elsevier, 2023) Zeinali Heris, Saeed; Mohammadpourfard, Mousa; Etemadi, Martin; Mousavi, Seyed Borhan; Mohammadpourfard, Mousa; Ramavandi, Bahman; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe photodegradation of tetracycline antibiotics (TC) in an aqueous solution, using the TiO2 nanoparticles, ZnO microparticles, and TiO2/ZnO composite under the UV lamp in a continuous reactor, was performed. The effects of different parameters, such as the initial TC concentration, medium pH, ratio of each photocatalyst, and the flow rate were comprehensively studied. SEM, EDX, and XRD characterization techniques were employed to study the morphology and structure features of the prepared composite. The results revealed that a more significant amount of TC is not easily removed from wastewater. Furthermore, by increasing the pH of the medium to 11, the efficiency of TC degradation was increased, while the amount of removal remained stable at higher pH values. As the flow rate increased up to 190 mL/min, the removal efficiency increased; however, at higher flow rates, lower efficiency was obtained. Moreover, using multivariate analysis and response surface methodology (RSM), a model for removing TC and the effect of experimental parameters on removal efficiency was proposed. The optimal conditions using the RSM method were found to be the reduction efficiency of 78.94 % in pH = 11 (flow rate of 132 mL/min, and TiO2 concentration of 323 mg) and reduction efficiency of 75.89% in pH = 9 (flow rate of 143.19 mL/min and TiO2 concentration of 312.73 mg). © 2023 Elsevier B.V.Book Part Citation - Scopus: 4Investigation of a New Methanol, Hydrogen, and Electricity Production System Based on Carbon Capture and Utilization(Springer, 2023) Khani, Leyla; Mohammadpourfard, Mousa; Mohammadpourfard, Mousa; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIt is well-known that clean energy transition requires low carbon emission. The increase in population, economic development, and human welfare demands has led to a rise in energy consumption, mainly supplied by fossil fuels. However, burning fossil fuels produces carbon dioxide, which is a greenhouse gas and a contributor to environmental problems. Therefore, carbon capture and conversion to different products have gained attention. On the other hand, combining two or more different thermodynamic systems for simultaneous production of various demands from one energy source looks reasonable. In this regard, a new trigeneration system is proposed to decrease atmospheric carbon dioxide emission and produce methanol, hydrogen, and power. A flue gas stream with a defined composition, solar energy, and atmospheric air are the system’s inlets. Then, mass, energy, and exergy balance equations are applied for each subsystem to investigate the system’s thermodynamic performance. Also, the effect of changing operating parameters on the performance of each subsystem is studied. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.Article Citation - WoS: 12Citation - Scopus: 16An Integrated Decision-Making Framework for Mitigating the Impact of Urban Heat Islands on Energy Consumption and Thermal Comfort of Residential Buildings(MDPI, 2023) Turhan, Cihan; Gökçen Akkurt, Gülden; Atalay, Ali Serdar; Turhan, Cihan; Gökçen Akkurt, Gülden; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyUrban heat island (UHI) is a zone that is significantly warmer than its surrounding rural zones as a result of human activities and rapid and dense urbanization. Excessive air temperature due to the UHI phenomenon affects the energy performance of buildings and human health and contributes to global warming. Knowing that most of the building energy is consumed by residential buildings, therefore, developing a framework to mitigate the impact of the UHI on residential building energy performance is vital. This study develops an integrated framework that combines hybrid micro-climate and building energy performance simulations and multi-criteria decision-making techniques. As a case study, an urban area is analyzed under the Urban GreenUP project funded by the European Union's Horizon 2020 Programme. Four different strategies to mitigate the UHI effect, including the current situation, changing the low-albedo materials with high-albedo ones, nature-based solutions, and changing building facade materials, are investigated with a micro-climatic simulation tool. Then, the output of the strategies, which is potential air temperature, is used in a dynamic building energy simulation software to obtain energy consumption and thermal comfort data of the residential buildings in the case area. Finally, a multi-criteria decision-making model, using real-life criteria, such as total energy consumption, thermal comfort, capital cost, lifetime and installation flexibility, is used to make a decision for decreasing the UHI effect on residential energy performance of buildings. The results showed that applying NBSs, such as green roofs and changing existing trees with high leaf area density ones, have the highest ranking among all mitigation strategies. The output of this study may help urban planners, architects, and engineers in the decision-making processes during the design phase of urban planning.Book Part Citation - Scopus: 1A New Stable Solar System for Electricity, Cooling, Heating, and Potable Water Production in Sunny Coastal Areas(Springer, 2023) Khani, Leyla; Mohammadpourfard, Mousa; Mohammadpourfard, Mousa; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyNowadays, more attention is paid to provide clean energy products with low environmental pollution in a decentralized way. Many coastal rural areas suffer from freshwater and electricity scarcity, especially in hot weather condition. Meanwhile, these regions have a great access to intense solar radiation and seawater. Hence, it seems logical to use the available solar energy in those places to provide to necessities like power, heating, and cooling. A new solar cooling, power, heating, and freshwater production system is designed, evaluated, and optimized in this research. The proposed system is composed of several subsystems to generate each product with high efficiency and reliability. Solar energy is unavailable at night, so molten salt energy storage is used to establish the steady operation of the system. Then, the system is evaluated from thermodynamic and exergoeconomic viewpoints, and a parametric study is accomplished to study the effect on the system performance of key variables. In the end, the system is optimized to determine its best operating condition for different cases. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.