Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Comparative Study of Modularity-Based Community Detection Methods for Online Social Networks

dc.contributor.author Karataş, Arzum
dc.contributor.author Şahin, Serap
dc.contributor.other 03.04. Department of Computer Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2018-12-25T07:08:25Z
dc.date.available 2018-12-25T07:08:25Z
dc.date.issued 2018
dc.description 12th Turkish National Software Engineering Symposium, UYMS 2018; Istanbul; Turkey; 10 September 2018 through 12 September 2018 en_US
dc.description.abstract Digital data represent our daily activities and tendencies. One of its main source is Online Social Networks (OSN) such as Facebook, YouTube etc. OSN are generating continuously high volume of data and define a dynamic virtual environment. This environment is mostly represented by graphs. Analysis of OSN data (i.e.,extracting any kind of relations and tendencies) defines valuable information for economic, socio-cultural and politic decisions. Community detection is important to analyze and understand underlying structure and tendencies of OSNs. When this information can be analysed successfully, software engineering tools and decision support systems can produce more successful results for end users. In this study, we present a survey of selected outstanding modularity-based static community detection algorithms and do comparative analysis among them in terms of modularity, running time and accuracy. We use different real-world OSN test beds selected from SNAP dataset collection such as Facebook Ego network, Facebook Pages network (Facebook gemsec), LiveJournal, Orkut and YouTube networks. en_US
dc.identifier.citation Karataş, A., and Şahin, S. (2018, September 10-12). A comparative study of modularity-based community detection methods for online social networks. In A. Tarhan and Murat E. (Eds.), paper presented at the 12th Turkish National Software Engineering Symposium, UYMS 2018; Istanbul; Turkey. en_US
dc.identifier.issn 1613-0073
dc.identifier.scopus 2-s2.0-85053710404
dc.identifier.uri http://ceur-ws.org/Vol-2201/UYMS_2018_paper_68.pdf
dc.identifier.uri http://hdl.handle.net/11147/7066
dc.language.iso en en_US
dc.publisher CEUR Workshop Proceedings en_US
dc.relation.ispartof 12th Turkish National Software Engineering Symposium, UYMS 2018 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Community detection en_US
dc.subject Online Social Network en_US
dc.subject Modularity en_US
dc.subject Social network analysis en_US
dc.title A Comparative Study of Modularity-Based Community Detection Methods for Online Social Networks en_US
dc.title.alternative Çevrimiçi Sosyal Ağlar İçin Modülerite Tabanlı Topluluk Algılama Yöntemlerinin Karşılaştırmalı Bir Çalışması en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id TR115373
gdc.author.institutional Karataş, Arzum
gdc.author.institutional Karataş, Arzum
gdc.author.institutional Şahin, Serap
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department İzmir Institute of Technology. Computer Engineering en_US
gdc.description.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.volume 2201 en_US
gdc.description.wosquality N/A
gdc.scopus.citedcount 2
relation.isAuthorOfPublication f3ff9456-f339-4a8f-9d65-5da2c5ac42a8
relation.isAuthorOfPublication 1ba7abd5-d1f8-41d8-924f-529afd5c84da
relation.isAuthorOfPublication.latestForDiscovery f3ff9456-f339-4a8f-9d65-5da2c5ac42a8
relation.isOrgUnitOfPublication 9af2b05f-28ac-4014-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4014-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
7066.pdf
Size:
419.46 KB
Format:
Adobe Portable Document Format
Description:
Conference Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: