Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Development of Chrono-Spectral Gold Nanoparticle Growth Based Plasmonic Biosensor Platform

dc.contributor.author Sözmen,A.B.
dc.contributor.author Elveren,B.
dc.contributor.author Erdogan,D.
dc.contributor.author Mezgil,B.
dc.contributor.author Bastanlar,Y.
dc.contributor.author Yildiz,U.H.
dc.contributor.author Arslan Yildiz,A.
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2024-03-03T16:41:35Z
dc.date.available 2024-03-03T16:41:35Z
dc.date.issued 2024
dc.description.abstract Plasmonic sensor platforms are designed for rapid, label-free, and real-time detection and they excel as the next generation biosensors. However, current methods such as Surface Plasmon Resonance require expertise and well-equipped laboratory facilities. Simpler methods such as Localized Surface Plasmon Resonance (LSPR) overcome those limitations, though they lack sensitivity. Hence, sensitivity enhancement plays a crucial role in the future of plasmonic sensor platforms. Herein, a refractive index (RI) sensitivity enhancement methodology is reported utilizing growth of gold nanoparticles (GNPs) on solid support and it is backed up with artificial neural network (ANN) analysis. Sensor platform fabrication was initiated with GNP immobilization onto solid support; immobilized GNPs were then used as seeds for chrono-spectral growth, which was carried out using NH2OH at varied incubation times. The response to RI change of the platform was investigated with varied concentrations of sucrose and ethanol. The detection of bacteria E.coli BL21 was carried out for validation as a model microorganism and results showed that detection was possible at 102 CFU/ml. The data acquired by spectrophotometric measurements were analyzed by ANN and bacteria classification with percentage error rates near 0% was achieved. The proposed LSPR-based, label-free sensor application proved that the developed methodology promises utile sensitivity enhancement potential for similar sensor platforms. © 2024 The Author(s) en_US
dc.identifier.doi 10.1016/j.biosx.2024.100439
dc.identifier.issn 2590-1370
dc.identifier.scopus 2-s2.0-85182601487
dc.identifier.uri https://doi.org/10.1016/j.biosx.2024.100439
dc.identifier.uri https://hdl.handle.net/11147/14329
dc.language.iso en en_US
dc.publisher Elsevier Ltd en_US
dc.relation.ispartof Biosensors and Bioelectronics: X en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial neural network en_US
dc.subject Microorganism monitoring en_US
dc.subject Plasmonic biosensor en_US
dc.subject SPR sensitivity enhancement en_US
dc.title Development of Chrono-Spectral Gold Nanoparticle Growth Based Plasmonic Biosensor Platform en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57201620092
gdc.author.scopusid 57201152720
gdc.author.scopusid 57193697547
gdc.author.scopusid 57195216681
gdc.author.scopusid 15833922000
gdc.author.scopusid 8516383700
gdc.author.scopusid 8516383700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Izmir Institute of Technology en_US
gdc.description.departmenttemp Sözmen A.B., Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey; Elveren B., Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey; Erdogan D., Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey; Mezgil B., Department of Computer Engineering, Izmir Institute of Technology, Izmir, Turkey; Bastanlar Y., Department of Computer Engineering, Izmir Institute of Technology, Izmir, Turkey; Yildiz U.H., Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey; Arslan Yildiz A., Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 100439
gdc.description.volume 16 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4390750521
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6736384E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Artificial neural network
gdc.oaire.keywords SPR sensitivity enhancement
gdc.oaire.keywords Microorganism monitoring
gdc.oaire.keywords Plasmonic biosensor
gdc.oaire.keywords TP248.13-248.65
gdc.oaire.keywords Biotechnology
gdc.oaire.popularity 3.927254E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0210 nano-technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0104 chemical sciences
gdc.openalex.fwci 0.882
gdc.openalex.normalizedpercentile 0.56
gdc.opencitations.count 1
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4003-8abe-a4dfe192da5e

Files