Unveiling the Design Rules for Tunable Emission in Graphene Quantum Dots: A High-Throughput TDDFT and Machine Learning Perspective

dc.contributor.author Özönder, Şener
dc.contributor.author Özdemir, Mustafa Coşkun
dc.contributor.author Ünlü, Caner
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2025-09-25T18:56:11Z
dc.date.available 2025-09-25T18:56:11Z
dc.date.issued 2025
dc.description.abstract The ability to tailor the optical properties of graphene quantum dots (GQDs) is critical for their application in optoelectronics, bioimaging and sensing. However, a comprehensive understanding of how shape, size and doping influence their emission properties remains elusive. In this study, we conduct a systematic high-throughput time-dependent density functional theory (TDDFT) and machine learning analysis of 284 distinct GQDs, varying in shape (square, hexagonal, amorphous), size (∼1–2 nm) and doping configurations with elements B, N, O, S and P at varying concentrations (1.5–7%). Our findings reveal clear design principles for tuning emission wavelengths based on dopant type, concentration and GQD geometry. Notably, sulfur doping at specific concentrations consistently results in higher emission energies, with certain configurations yielding emissions within the visible range. By elucidating how quantum confinement effects, symmetry breaking and dopant-induced modifications govern GQD optical properties, we provide practical design rules for tailoring emission spectra for next-generation optoelectronic, bioimaging and sensing applications. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1007/s12039-025-02407-5
dc.identifier.issn 0974-3626
dc.identifier.issn 0973-7103
dc.identifier.scopus 2-s2.0-105013681632
dc.identifier.uri https://doi.org/10.1007/s12039-025-02407-5
dc.identifier.uri https://hdl.handle.net/11147/18460
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Journal of Chemical Sciences en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Emission en_US
dc.subject Graphene Quantum Dots en_US
dc.subject Machine Learning en_US
dc.subject Time-Dependent Density Functional Theory en_US
dc.subject Artificial Intelligence en_US
dc.subject Density Functional Theory en_US
dc.subject Doping (Additives) en_US
dc.subject Emission Spectroscopy en_US
dc.subject Graphene en_US
dc.subject Optical Properties en_US
dc.subject Throughput en_US
dc.subject Design Rules en_US
dc.subject Emission en_US
dc.subject Functional Machines en_US
dc.subject Graphenes en_US
dc.subject High-Throughput en_US
dc.subject Machine-Learning en_US
dc.subject Optical- en_US
dc.subject Property en_US
dc.subject Throughput Time en_US
dc.subject Time Dependent Density Functional Theory en_US
dc.subject Neutron Emission en_US
dc.title Unveiling the Design Rules for Tunable Emission in Graphene Quantum Dots: A High-Throughput TDDFT and Machine Learning Perspective
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36144435300
gdc.author.scopusid 58718389400
gdc.author.scopusid 28667489300
gdc.description.department İzmir Institute of Technology en_US
gdc.description.departmenttemp [Özönder] Şener, Boğaziçi Üniversitesi, Bebek, Turkey; [Özdemir] Mustafa Coşkun, Department of Chemistry, Izmir Yüksek Teknoloji Enstitüsü, Izmir, Turkey; [Ünlü] Caner, Department of Chemistry, İstanbul Teknik Üniversitesi, Istanbul, Turkey en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 137 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4413352571
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4003-8abe-a4dfe192da5e

Files