Enhancing Biomass Pyrolysis Via Microwave Heating: a CFD-DEM Study on Intensification in Fluidized Beds

No Thumbnail Available

Date

2026

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Biomass conversion into high-value products in fluidized beds can be significantly improved by utilizing microwave irradiation as the heating source. The present work studied microwave-assisted biomass pyrolysis using a coupled CFD-DEM model in a fluidized bed. The effect of key operating parameters, including inlet gas velocity (1.5, 2, and 2.5 times the minimum fluidization velocity), mean particle diameter (1.2, 1.3, and 1.5 mm), and microwave power input (200, 400, and 600 W), was evaluated on the performance of the reactor. The results revealed that higher microwave power increased the mean particle temperature and chemical conversion rate due to greater internal energy generation within the biomass particles. Increasing the gas velocity led to lower particle temperature because of enhanced convective heat transfer to the gas phase, and improved the uniformity of temperature and conversion distributions. Furthermore, decreasing the mean particle diameter from 1.5 to 1.2 mm increased the average temperature, from 890 to 987 K, and raised biomass conversion from 14.8 to 18.1 %, mainly by reducing convective heat losses. The validated model developed in this study enables accurate predictions of process behavior and provides valuable insights for optimizing microwave-assisted biomass pyrolysis in fluidized beds. These findings highlight the potential of microwave-assisted fluidized bed pyrolysis as an efficient technique for process intensification in producing valuable bio-based products. © 2025 Elsevier B.V., All rights reserved.

Description

Keywords

Biomass, CFD-DEM, Fluidized Bed, Intensification, Microwave Heating, Pyrolysis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1

Source

Fuel

Volume

406

Issue

Start Page

End Page

Sustainable Development Goals