Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11391
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pashaev, Oktay | - |
dc.date.accessioned | 2021-11-06T09:48:28Z | - |
dc.date.available | 2021-11-06T09:48:28Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0040-5779 | - |
dc.identifier.issn | 1573-9333 | - |
dc.identifier.uri | https://doi.org/10.1134/S0040577921080079 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11391 | - |
dc.description.abstract | The problem of Hadamard quantum coin measurement in n trials, with an arbitrary number of repeated consecutive last states, is formulated in terms of Fibonacci sequences for duplicated states, Tribonacci numbers for triplicated states, and N-Bonacci numbers for arbitrary N-plicated states. The probability formulas for arbitrary positions of repeated states are derived in terms of the Lucas and Fibonacci numbers. For a generic qubit coin, the formulas are expressed by the Fibonacci and more general, N-Bonacci polynomials in qubit probabilities. The generating function for probabilities, the Golden Ratio limit of these probabilities, and the Shannon entropy for corresponding states are determined. Using a generalized Born rule and the universality of the n-qubit measurement gate, we formulate the problem in terms of generic n- qubit states and construct projection operators in a Hilbert space, constrained on the Fibonacci tree of the states. The results are generalized to qutrit and qudit coins described by generalized FibonacciN-Bonacci sequences. | en_US |
dc.description.sponsorship | This work was supported in part by the TUBITAK grant 116F206. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pleiades Publishing | en_US |
dc.relation.ispartof | Theoretical and Mathematical Physics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fibonacci numbers | en_US |
dc.subject | Quantum measurement | en_US |
dc.subject | Tribonacci numbers | en_US |
dc.subject | N-Bonacci numbers | en_US |
dc.title | Quantum Coin Flipping, Qubit Measurement, and Generalized Fibonacci Numbers | en_US |
dc.type | Article | en_US |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 208 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 1075 | en_US |
dc.identifier.endpage | 1092 | en_US |
dc.identifier.wos | WOS:000686798400007 | en_US |
dc.identifier.scopus | 2-s2.0-85113143084 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1134/S0040577921080079 | - |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q3 | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Pashaev2021_Article_Quantum.pdf | 287.66 kB | Adobe PDF | View/Open |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.