Please use this identifier to cite or link to this item:
Title: Electromechanical RT-LAMP device for portable SARS-CoV-2 detection
Authors: Tarım, Ergün Alperay
Öksüz, Cemre
Karakuzu, Betül
Appak, Özgür
Sayıner, Ayça Arzu
Tekin, Hüseyin Cumhur
Keywords: Colorimetric detection
Electromechanical systems
Issue Date: Mar-2023
Publisher: Elsevier
Abstract: Rapid point-of-care tests for infectious diseases are essential, especially in pandemic conditions. We have developed a point-of-care electromechanical device to detect SARS-CoV-2 viral RNA using the reverse-transcription loop-mediated isothermal amplification (RT-LAMP) principle. The developed device can detect SARS-CoV-2 viral RNA down to 103 copies/mL and from a low amount of sample volumes (2 μL) in less than an hour of standalone operation without the need for professional labor and equipment. Integrated Peltier elements in the device keep the sample at a constant temperature, and an integrated camera allows automated monitoring of LAMP reaction in a stirring sample by using colorimetric analysis of unfocused sample images in the hue/saturation/value color space. This palm-fitting, portable and low-cost device does not require a fully focused sample image for analysis, and the operation could be stopped automatically through image analysis when the positive test results are obtained. Hence, viral infections can be detected with the portable device produced without the need for long, expensive, and labor-intensive tests and equipment, which can make the viral tests disseminated at the point-of-care.
Appears in Collections:Bioengineering / Biyomühendislik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
1-s2.0-S0039914022009869-main.pdfArticle File3.77 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Dec 2, 2023

Page view(s)

checked on Dec 4, 2023


checked on Dec 4, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.