Please use this identifier to cite or link to this item:
Title: Structural changes in fasted state dietary mixed micelles upon solubilization of beta-carotene
Authors: Bayramoğlu, Beste
Abstract: It was aimed to investigate the structural changes taking place in duodenal mixed micelles (MM) at fasted state with the incorporation of fatty acids (FA) and the morphological transformations in these MMs upon solubilization of β-carotene (BCR) through coarse-grained (CG) molecular dynamics (MD) simulations. All simulations were performed with GROMACS 2019 simulation package using the Martini force field. Lauric acid (LA), stearic acid (SA) and linoleic acid (LNA) were used to explore the effects of FA chain length and unsaturation. Micelle swelling was observed with the incorporation of all FAs. The increase in size was in line with increasing FA chain length and unsaturation. MMs incorporating LA and SA were ellipsoidal in shape, while polyunsaturated LNA resulted in a worm-like MM. Upon solubilization of BCRs, swelling was observed only in the MMs with long-chain SA and LNA. No micelle growth was observed in the plain and LA MMs despite their smaller sizes. This was attributed to their low-density hydrophobic cores, which allowed a condensation effect induced by the interactions between BCRs and POPC tails. It is inferred that when the micelle is large enough to solubilize BCRs, whether or not swelling will take place depends on the core density. The increase in micelle size was very small in the MM incorporating LNA compared to that in the MM with SA, which was accompanied by an elliptical-to-cylindrical shape transformation. This was due to the fluid nature of the worm-like LNA micelle, which readily allowed the solubilization of 3 BCRs within its core. By resolving the internal structures of BCR incorporated MMs, this study gives valuable insight into the effects of FA chain length and unsaturation on the solubilization behavior of dietary MMs. The results are expected to give direction to the development of rational design strategies for effective BCR delivery systems.
ISSN: 2602-246X
Appears in Collections:Food Engineering / Gıda Mühendisliği
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection

Files in This Item:
File SizeFormat 
document.pdf1.34 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Jun 17, 2024


checked on Jun 17, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.