Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2647
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Balaban, Murat Ömer | - |
dc.contributor.author | Chombeau, Melanie | - |
dc.contributor.author | Cırban, Dilşat | - |
dc.contributor.author | Gümüş, Bahar | - |
dc.date.accessioned | 2016-12-22T07:26:56Z | |
dc.date.available | 2016-12-22T07:26:56Z | |
dc.date.issued | 2010-10 | |
dc.identifier.citation | Balaban, M. Ö., Chombeau, M., Cırban, D., and Gümüş, B. (2010). Prediction of the weight of Alaskan Pollock using image analysis. Journal of Food Science, 75(8), E552-E556. doi:10.1111/j.1750-3841.2010.01813.x | en_US |
dc.identifier.issn | 0022-1147 | |
dc.identifier.issn | 0022-1147 | - |
dc.identifier.uri | http://doi.org/10.1111/j.1750-3841.2010.01813.x | |
dc.identifier.uri | http://hdl.handle.net/11147/2647 | |
dc.description.abstract | Determining the size and quality attributes of fish by machine vision is gaining acceptance and increasing use in the seafood industry. Objectivity, speed, and record keeping are advantages in using this method. The objective of this work was to develop the mathematical correlations to predict the weight of whole Alaskan Pollock (Theragra chalcogramma) based on its view area from a camera. One hundred and sixty whole Pollock were obtained fresh, within 2 d after catch from a Kodiak, Alaska, processing plant. The fish were first weighed, then placed in a light box equipped with a Nikon D200 digital camera. A reference square of known surface area was placed by the fish. The obtained image was analyzed to calculate the view area of each fish. The following equations were used to fit the view area (X) compared with weight (Y) data: linear, power, and 2nd-order polynomial. The power fit (Y = A·XB) gave the highest R2 for the fit (0.99). The effect of fins and tail on the accuracy of the weight prediction using view area were evaluated. Removing fins and tails did not improve prediction accuracy. Machine vision can accurately predict the weight of whole Pollock. © 2010 Institute of Food Technologists®. | en_US |
dc.language.iso | en | en_US |
dc.publisher | John Wiley and Sons Inc. | en_US |
dc.relation.ispartof | Journal of Food Science | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Zlaskan pollock | en_US |
dc.subject | Image processing | en_US |
dc.subject | View area | en_US |
dc.subject | Regression analysis | en_US |
dc.subject | Body weight | en_US |
dc.title | Prediction of the weight of Alaskan Pollock using image analysis | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Cırban, Dilşat | - |
dc.department | İzmir Institute of Technology. Food Engineering | en_US |
dc.identifier.volume | 75 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | E552 | en_US |
dc.identifier.endpage | E556 | en_US |
dc.identifier.wos | WOS:000282878200031 | en_US |
dc.identifier.scopus | 2-s2.0-77958609033 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1111/j.1750-3841.2010.01813.x | - |
dc.identifier.pmid | 21535495 | en_US |
dc.relation.doi | 10.1111/j.1750-3841.2010.01813.x | en_US |
dc.coverage.doi | 10.1111/j.1750-3841.2010.01813.x | en_US |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q1 | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | Food Engineering / Gıda Mühendisliği PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
55
checked on Sep 1, 2024
WEB OF SCIENCETM
Citations
43
checked on Aug 24, 2024
Page view(s)
154
checked on Sep 2, 2024
Download(s)
370
checked on Sep 2, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.