Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Automatic Identification of Evolutionary and Sequence Relationships in Large Scale Protein Data Using Computational and Graph-Theoretical Analyses

Loading...
Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In this study, computational methods are developed for the automatic identification of functional/evolutionary relationships between biomolecular sequences in large and diverse datasets. Different approaches were considered during the development and optimization of the methods. The first approach focused on the expression of gene and protein sequences in high dimensional vector spaces via non-linear embedding. This allowed statistical learning algorithms to be applied on the resulting embeddings in order to cluster and/or classify the sequences. The second approach revised the pairwise similarities between sequences following multiple sequence alignment in order to eliminate the unreliable connections due to remote homology and/or poor alignment. This is achieved by thresholding the pairwise connectivity map over 2 parameters: the inferred evolutionary distances and the number of gapless positions in each pairwise alignment. The resulting connectivity map was disjoint and consisted of clusters of similar proteins. The third and the final approach sought to associate the amino acid sequences with each other over highly conserved/shared sequence segments, as shared sequence segments imply conserved functional or structural attributes. An automated method was developed to identify these segments in large and diverse collections of amino acid sequences, using a combination of sequence alignment, residue conservation scoring and graph-theoretical approaches. The method produces a table of associations between the input sequences and the identified conserved regions that can reveal both new members to the known protein families and entirely new lines. The methods were applied to a dataset composed of 17793 human proteins sequences in order to obtain a global functional relation map. On this map, functional and evolutionary properties of human proteins could be found based on their relationships to the ones bearing functional annotations. The results revealed that conserved regions corresponded strongly to annotated structural domains. This suggests the method can also be useful in identifying novel domains on protein sequences.

Description

Thesis (Doctoral)--İzmir Institute of Technology, Biotechnology and Bioengineering, İzmir, 2012
Includes bibliographical references (leaves: 111-115)
Text in English; Abstract: Turkish and English
xii, 115 leaves

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A

Source

Volume

Issue

Start Page

End Page

Page Views

428

checked on Sep 17, 2025

Downloads

182

checked on Sep 17, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo