Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5604
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜnlütürk, Sevcan-
dc.contributor.authorAtılgan, Mehmet Reşat-
dc.date.accessioned2017-05-25T06:54:22Z-
dc.date.available2017-05-25T06:54:22Z-
dc.date.issued2014-08-
dc.identifier.citationÜnlütürk, S., and Atılgan, M.R. (2014). UV-C irradiation of freshly squeezed grape juice and modeling inactivation kinetics. Journal of Food Process Engineering, 37(4), 438-449. doi:10.1111/jfpe.12099en_US
dc.identifier.issn0145-8876-
dc.identifier.issn1745-4530-
dc.identifier.urihttps://doi.org/10.1111/jfpe.12099-
dc.identifier.urihttp://hdl.handle.net/11147/5604-
dc.description.abstractUV inactivation kinetics of freshly squeezed turbid white grape juice (FSTGJ) treated with an annular flow UV reactor by applying UV dosages ranging from 0 to 116.7J/mL, at three different flow rates (0.90, 1.75 and 3.70mL/s), were modeled by using log-linear, Weibull, Hom and modified Chick-Watson models. FSTGJ was circulated five times in the UV system, i.e., UV exposure time was 20.33min during processing. The populations of Escherichia coli K-12, lactic acid bacteria (LAB) and foodborne yeasts were reduced by 3.759, 4.133 and 1.604log cfu/mL, respectively, after exposure to UV dosage of 116.7J/mL at the lowest flow rate. The inactivation kinetics of foodborne yeasts were best described by the modified Chick-Watson model, with the least root mean squared error (RMSE=0.001, R2=0.999). Besides, the inactivation kinetics of E.coli K-12 and LAB were best fitted by Weibull model (R2=0.999). Additionally, when the UV exposure time was increased up to 32.5min (i.e., eight cycles), UV-C treatment of FSTGJ resulted in 5.341log cfu/mL reduction in E.coli K-12, which meets the Food and Drug Administration requirement of a 5log reduction of microorganisms in fruit juices. Practical Applications Consumer demand for high-quality fruit juice with fresh-like characteristics has markedly expanded in recent years. UV-C irradiation is a nonthermal method and allows the processing of fruit juices with a minimal or no changes in flavor, essential nutrients and vitamins. Although thermal pasteurization is the most convenient way of increasing the shelf life of fruit juices, it causes a "cook taste" in grape juice. So, in this study, the application of UV-C irradiation to process grape juice was investigated. The shape of the microbial inactivation curve is sigmoidal in UV treatment. Therefore, different kinetic models (e.g., log-linear, Weibull, Hom and modified Chick-Watson) are applied to describe the inactivation kinetics of Escherichia coli K-12, lactic acid bacteria and foodborne yeasts. Kinetic parameters (e.g., k and D) and models can be used for the development of UV-C irradiation process to ensure microbial safety in juice products.en_US
dc.description.sponsorshipDepartment of Food Engineering, Izmir Institute of Technology, Izmir, Turkey (2010IYTE09)en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Inc.en_US
dc.relation.ispartofJournal of Food Process Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBacteriaen_US
dc.subjectEscherichia colien_US
dc.subjectFlow rateen_US
dc.subjectFruit juicesen_US
dc.subjectInactivation kineticsen_US
dc.titleUV-C irradiation of freshly squeezed grape juice and modeling inactivation kineticsen_US
dc.typeArticleen_US
dc.authoridTR44047en_US
dc.institutionauthorÜnlütürk, Sevcan-
dc.institutionauthorAtılgan, Mehmet Reşat-
dc.departmentİzmir Institute of Technology. Food Engineeringen_US
dc.identifier.volume37en_US
dc.identifier.issue4en_US
dc.identifier.startpage438en_US
dc.identifier.endpage449en_US
dc.identifier.wosWOS:000339718300010en_US
dc.identifier.scopus2-s2.0-84904420851en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1111/jfpe.12099-
dc.relation.doi10.1111/jfpe.12099en_US
dc.coverage.doi10.1111/jfpe.12099en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
crisitem.author.dept03.08. Department of Food Engineering-
Appears in Collections:Food Engineering / Gıda Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5604.pdfMakale304.05 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

26
checked on Feb 16, 2024

WEB OF SCIENCETM
Citations

17
checked on Jan 20, 2024

Page view(s)

152
checked on Feb 19, 2024

Download(s)

266
checked on Feb 19, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.