Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5937
Title: Neat-flat modules
Authors: Büyükaşık, Engin
Durğun, Yılmaz
Keywords: (Co)neat submodule
Closed submodule
Extending module
Neat-flat module
QF-ring
Issue Date: Jan-2016
Publisher: Taylor and Francis Ltd.
Source: Büyükaşık, E., and Durğun, Y. (2016). Neat-flat modules. Communications in Algebra, 44(1), 416-428. doi:10.1080/00927872.2014.982816
Abstract: Let R be a ring. A right R-module M is said to be neat-flat if the kernel of any epimorphism Y → M is neat in Y, i.e., the induced map Hom(S, Y) → Hom(S, M) is surjective for any simple right R-module S. Neat-flat right R-modules are projective if and only if R is a right (Formula presented.) -CS ring. Every cyclic neat-flat right R-module is projective if and only if R is right CS and right C-ring. It is shown that, over a commutative Noetherian ring R, (1) every neat-flat module is flat if and only if every absolutely coneat module is injective if and only if R ≅ A × B, wherein A is a QF-ring and B is hereditary, and (2) every neat-flat module is absolutely coneat if and only if every absolutely coneat module is neat-flat if and only if R ≅ A × B, wherein A is a QF-ring and B is Artinian with J 2(B) = 0.
URI: http://doi.org/10.1080/00927872.2014.982816
http://hdl.handle.net/11147/5937
ISSN: 0092-7872
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
5937.pdfMakale206.57 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Feb 16, 2024

WEB OF SCIENCETM
Citations

11
checked on Jan 20, 2024

Page view(s)

182
checked on Feb 19, 2024

Download(s)

196
checked on Feb 19, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.