Please use this identifier to cite or link to this item:
Title: Viscoelastic modeling of human nasal tissues with a mobile measurement device
Authors: Işıtman, Oğulcan
Ayit, Orhan
Vardarlı, Eren
Hanalioğlu, Şahin
Işıkay, İlkay
Berker, Mustafa
Dede, Mehmet İsmet Can
Keywords: Soft tissue modeling
Ex-vivo tests
Nasal tissue
Elastic model
Maxwell model
Issue Date: 2019
Publisher: Springer
Source: Işıtman, O., Ayit, O., Vardarlı, E., Hanalioğlu, Ş., Işıkay, İ., Berker, M., and Dede, M.İ.C. (2019). Viscoelastic modeling of human nasal tissues with a mobile measurement device. In G. Carbone, M. Ceccarelli, and D. Pisla (Eds.), New Trends in Medical and Service Robotics: Advances in Theory and Practice, (pp. 216-224). Cham: Springer. doi:10.1007/978-3-030-00329-6_25
Abstract: Modeling the dynamic of tool-tissue interaction for the robotic minimally invasive surgeries is one of the main issues for designing appropriate robot controllers. A mobile measurement device is produced in order to model some nasal tissues of a human. This mobile device is a hand-held one which measures the applied moments and relative angular displacements about a fixed pivot point. The ex-vivo measurements are realized by surgeons on a relatively fresh human cadaver head. The tip of the nose and the nasal concha are the two tissues that are investigated. In this study, five different viscoelastic models are considered; Elastic, Kelvin- Voight, Kelvin-Boltzmann, Maxwell and Hunt-Crossley. The results are evaluated and cross-validated on each data set. Hunt-Crossley and Kelvin-Boltzmann models provided the minimum root-mean-square (RMS) error among the other models.
ISBN: 978-3-030-00328-9
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
7035.pdfBook Part286.17 kBAdobe PDFThumbnail
Show full item record

CORE Recommender


checked on Feb 16, 2024


checked on Feb 10, 2024

Page view(s)

checked on Feb 26, 2024


checked on Feb 26, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.