Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7568
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoztepe, Tuğçe-
dc.contributor.authorGüleç, Şükrü-
dc.date.accessioned2020-01-07T13:12:08Z
dc.date.available2020-01-07T13:12:08Z
dc.date.issued2018-04en_US
dc.identifier.citationBoztepe, T., and Güleç, Ş. (2018). Investigation of the influence of high glucose on molecular and genetic responses: An in vitro study using a human intestine model. Genes and Nutrition, 13(1). doi:10.1186/s12263-018-0602-xen_US
dc.identifier.issn1865-3499
dc.identifier.issn1865-3499-
dc.identifier.urihttps://doi.org/10.1186/s12263-018-0602-x
dc.identifier.urihttps://hdl.handle.net/11147/7568
dc.description.abstractBackground: Dietary glucose consumption has increased worldwide. Long-term high glucose intake contributes to the development of obesity and type 2 diabetes mellitus (T2DM). Obese people tend to eat glucose-containing foods, which can lead to an addiction to glucose, increased glucose levels in the blood and intestine lumen, and exposure of intestinal enterocytes to high dietary glucose. Recent studies have documented a role for enterocytes in glucose sensing. However, the molecular and genetic relationship between high glucose levels and intestinal enterocytes has not been determined. We aimed to identify relevant target genes and molecular pathways regulated by high glucose in a well-established in vitro epithelial cell culture model of the human intestinal system (Caco-2 cells). Methods: Cells were grown in a medium containing 5.5 and 25 mM glucose in a bicameral culture system for 21 days to mimic the human intestine. Transepithelial electrical resistance was used to control monolayer formation and polarization of the cells. Total RNA was isolated, and genome-wide mRNA expression profiles were determined. Molecular pathways were analyzed using the DAVID bioinformatics program. Gene expression levels were confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results: Microarray gene expression data demonstrated that 679 genes (297 upregulated, 382 downregulated) were affected by high glucose treatment. Bioinformatics analysis indicated that intracellular protein export (p=0.0069) and ubiquitin-mediated proteolysis (p=0.024) pathways were induced, whereas glycolysis/gluconeogenesis (p<0.0001), pentose phosphate (p=0.0043), and fructose-mannose metabolism (p=0.013) pathways were downregulated, in response to high glucose. Microarray analysis of gene expression showed that high glucose significantly induced mRNA expression levels of thioredoxin-interacting protein (TXNIP, p=0.0001) and lipocalin 15 (LCN15, p=0.0016) and reduced those of ATP-binding cassette, sub-family A member 1 (ABCA1, p=0.0004), and iroquois homeobox 3 (IRX3, p=0.0001). Conclusions: To our knowledge, this is the first investigation of high glucose-regulated molecular responses in an intestinal enterocyte model. Our findings identify new target genes that may be important in the intestinal glucose absorption and metabolism during high glucose consumption.en_US
dc.description.sponsorshipTUBITAK (214Z217)en_US
dc.language.isoenen_US
dc.publisherBioMed Central Ltd.en_US
dc.relation.ispartofGenes and Nutritionen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHigh glucose consumptionen_US
dc.subjectABC transporter A1en_US
dc.subjectObesityen_US
dc.subjectLCN15 geneen_US
dc.subjectTXNIP geneen_US
dc.subjectCaco-2 cell lineen_US
dc.titleInvestigation of the influence of high glucose on molecular and genetic responses: An in vitro study using a human intestine modelen_US
dc.typeArticleen_US
dc.authorid0000-0002-6789-1050en_US
dc.institutionauthorBoztepe, Tuğçe-
dc.institutionauthorGüleç, Şükrü-
dc.departmentİzmir Institute of Technology. Food Engineeringen_US
dc.identifier.volume13en_US
dc.identifier.issue1en_US
dc.identifier.wosWOS:000432371900001en_US
dc.identifier.scopus2-s2.0-85046108118en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/KBAG/214Z217
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1186/s12263-018-0602-x-
dc.identifier.pmid29736189en_US
dc.relation.doi10.1186/s12263-018-0602-xen_US
dc.coverage.doi10.1186/s12263-018-0602-xen_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept03.08. Department of Food Engineering-
Appears in Collections:Food Engineering / Gıda Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
7568.pdfMakale (Article)601.82 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

19
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

19
checked on Mar 27, 2024

Page view(s)

632
checked on Apr 15, 2024

Download(s)

202
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.