Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemiröz, Barış Evrim-
dc.contributor.authorSalah, Albert Ali-
dc.contributor.authorBaştanlar, Yalın-
dc.contributor.authorAkarun, Lale-
dc.date.accessioned2020-07-25T22:17:44Z
dc.date.available2020-07-25T22:17:44Z
dc.date.issued2019
dc.identifier.issn0932-8092
dc.identifier.issn1432-1769
dc.identifier.issn0932-8092-
dc.identifier.issn1432-1769-
dc.identifier.urihttps://doi.org/10.1007/s00138-019-01016-w
dc.identifier.urihttps://hdl.handle.net/11147/9613
dc.description.abstractOmnidirectional cameras cover more ground than perspective cameras, at the expense of resolution. Their comprehensive field of view makes omnidirectional cameras appealing for security and ambient intelligence applications. Person detection is usually a core part of such applications. Conventional methods fail for omnidirectional images due to different image geometry and formation. In this study, we propose a method for person detection in omnidirectional images, which is based on the integral channel features approach. Features are extracted from various channels, such as LUV and gradient magnitude, and classified using boosted decision trees. Features are pixel sums inside annular sectors (doughnut slice shapes) contained by the detection window. We also propose a novel data structure called radial integral image that allows to calculate sums inside annular sectors efficiently. We have shown with experiments that our method outperforms the previous state of the art and uses significantly less computational resources.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofMachine Vision and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOmnidirectional cameraen_US
dc.subjectObject detectionen_US
dc.subjectHuman detectionen_US
dc.subjectPerson detectionen_US
dc.subjectIntegral channel featuresen_US
dc.subjectIntegral imageen_US
dc.titleAffordable person detection in omnidirectional cameras using radial integral channel featuresen_US
dc.typeArticleen_US
dc.institutionauthorBaştanlar, Yalın-
dc.institutionauthorBaştanlar, Yalın
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume30en_US
dc.identifier.issue4en_US
dc.identifier.startpage645en_US
dc.identifier.endpage655en_US
dc.identifier.wosWOS:000469483000007en_US
dc.identifier.scopus2-s2.0-85063200063en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s00138-019-01016-w-
dc.relation.doi10.1007/s00138-019-01016-wen_US
dc.coverage.doi10.1007/s00138-019-01016-wen_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
ContentServer.pdfMakale (Article)1.89 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 6, 2024

WEB OF SCIENCETM
Citations

3
checked on Dec 7, 2024

Page view(s)

66,826
checked on Dec 2, 2024

Download(s)

114
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.