Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Predicting the Soft Error Vulnerability of Gpgpu Applications

dc.contributor.author Topçu, Burak
dc.contributor.author Öz, Işıl
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 03.04. Department of Computer Engineering
dc.contributor.other 03. Faculty of Engineering
dc.date.accessioned 2022-08-01T13:16:36Z
dc.date.available 2022-08-01T13:16:36Z
dc.date.issued 2022
dc.description This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant No: 119E011. en_US
dc.description.abstract As Graphics Processing Units (GPUs) have evolved to deliver performance increases for general-purpose computations as well as graphics and multimedia applications, soft error reliability becomes an important concern. The soft error vulnerability of the applications is evaluated via fault injection experiments. Since performing fault injection takes impractical times to cover the fault locations in complex GPU hardware structures, prediction-based techniques have been proposed to evaluate the soft error vulnerability of General-Purpose GPU (GPGPU) programs based on the hardware performance characteristics.In this work, we propose ML-based prediction models for the soft error vulnerability evaluation of GPGPU programs. We consider both program characteristics and hardware performance metrics collected from either the simulation or the profiling tools. While we utilize regression models for the prediction of the masked fault rates, we build classification models to specify the vulnerability level of the programs based on their silent data corruption (SDC) and crash rates. Our prediction models achieve maximum prediction accuracy rates of 96.6%, 82.6%, and 87% for masked fault rates, SDCs, and crashes, respectively. en_US
dc.identifier.doi 10.1109/PDP55904.2022.00025
dc.identifier.doi 10.1109/PDP55904.2022 en_US
dc.identifier.isbn 978-166546958-6 en_US
dc.identifier.scopus 2-s2.0-85129624617
dc.identifier.uri https://doi.org/10.1109/PDP55904.2022.00025
dc.identifier.uri https://hdl.handle.net/11147/12232
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation Proceedings - 30th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2022 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Computer graphics en_US
dc.subject Computer graphics equipment en_US
dc.subject Soft error en_US
dc.subject Radiation hardening en_US
dc.title Predicting the Soft Error Vulnerability of Gpgpu Applications en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-8310-1143
gdc.author.id 0000-0002-8310-1143 en_US
gdc.author.institutional Topçu, Burak
gdc.author.institutional Öz, Işıl
gdc.author.institutional Topçu, Burak
gdc.author.institutional Öz, Işıl
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.contributor.affiliation 01. Izmir Institute of Technology en_US
gdc.contributor.affiliation 01. Izmir Institute of Technology en_US
gdc.description.department İzmir Institute of Technology. Computer Engineering en_US
gdc.description.endpage 115 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 108 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4224229821
gdc.identifier.wos WOS:000827652300016
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.635068E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.2369273E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.186
gdc.openalex.normalizedpercentile 0.31
gdc.opencitations.count 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isAuthorOfPublication d8a5ab29-da7d-40d3-b979-05fd89664d25
relation.isAuthorOfPublication e0de33d0-b187-47e9-bae7-9b17aaabeb67
relation.isAuthorOfPublication.latestForDiscovery d8a5ab29-da7d-40d3-b979-05fd89664d25
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4014-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4003-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Predicting_the_Soft_Error.pdf
Size:
2.28 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.2 KB
Format:
Item-specific license agreed upon to submission
Description: