Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Deep Learning Based Adaptive Bit Allocation for Heterogeneous Interference Channels

dc.contributor.author Aycan, Esra
dc.contributor.author Özbek, Berna
dc.contributor.author Le Ruyet, Didier
dc.contributor.other 03.05. Department of Electrical and Electronics Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2021-11-06T09:54:38Z
dc.date.available 2021-11-06T09:54:38Z
dc.date.issued 2021
dc.description.abstract This paper proposes an adaptive bit allocation scheme by using a fully connected (FC) deep neural network (DNN) considering imperfect channel state information (CSI) for heterogeneous networks. Achieving an accurate CSI has a crucial role on the system performance of the heterogeneous networks. Different quantization techniques have been employed to reduce the feedback overhead. However, the system performance cannot increase linearly with the number of bits increasing exponentially. Since optimizing the total number of bits is too complex for the entire network, an initial step is performed to distribute the bits to each cell in the conventional method. Then, the distributed bits are further allocated to each channel optimally. In order to enable direct allocation for the entire network, a FC-DNN based method is presented in this study. The optimized number of bits can be directly obtained for a different number of bits and scenarios by the proposed approach. The simulations are performed by using various scenarios with different allocation schemes. The performance results show that the DNN based method achieves a closer performance to the conventional approach. (C) 2021 Elsevier B.V. All rights reserved. en_US
dc.description.sponsorship Scientific Research Projects Coordination unit of Izmir Katip Celebi UniversityIzmir Katip Celebi University [2020GAPMuMF0011] en_US
dc.description.sponsorship This research was partially supported by the Scientific Research Projects Coordination unit of Izmir Katip Celebi University (Project no. 2020GAPMuMF0011) . en_US
dc.identifier.doi 10.1016/j.phycom.2021.101364
dc.identifier.issn 1874-4907
dc.identifier.scopus 2-s2.0-85108679626
dc.identifier.uri https://doi.org/10.1016/j.phycom.2021.101364
dc.identifier.uri https://hdl.handle.net/11147/11543
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Physical Communication en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bit allocation en_US
dc.subject Deep neural networks en_US
dc.subject Heterogeneous networks en_US
dc.subject Channel state information en_US
dc.title Deep Learning Based Adaptive Bit Allocation for Heterogeneous Interference Channels en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Özbek, Berna
gdc.author.institutional Aycan, Esra
gdc.author.institutional Özbek, Berna
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Institute of Technology. Electrical and Electronics Engineering en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 47 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3160416349
gdc.identifier.wos WOS:000672688700028
gdc.openalex.fwci 0.222
gdc.openalex.normalizedpercentile 0.59
gdc.opencitations.count 1
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isAuthorOfPublication f130def6-23ab-4a0d-8859-3b32b1bb9082
relation.isAuthorOfPublication b2a3c040-7655-4ff2-ba23-8b0d8b4220d9
relation.isAuthorOfPublication.latestForDiscovery f130def6-23ab-4a0d-8859-3b32b1bb9082
relation.isOrgUnitOfPublication 9af2b05f-28ac-4018-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4018-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1874490721001014-main.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:
Article (Makale)