Long Term Wind Speed Prediction With Polynomial Autoregressive Model

dc.contributor.author Karakuş, Oktay
dc.contributor.author Kuruoğlu, Ercan E.
dc.contributor.author Altınkaya, Mustafa Aziz
dc.contributor.other 03.05. Department of Electrical and Electronics Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2021-01-24T18:31:44Z
dc.date.available 2021-01-24T18:31:44Z
dc.date.issued 2015
dc.description 23nd Signal Processing and Communications Applications Conference (SIU) en_US
dc.description.abstract Wind energy is one of the preferred energy generation methods because wind is an important renewable energy source. Prediction of wind speed in a time period, is important due to the one-to-one relationship between wind speed and wind power. Due to the nonlinear character of the wind speed data, nonlinear methods are known to produce better results compared to linear time series methods like Autoregressive (AR), Autoregressive Moving Average (ARMA) in predicting in a period longer than 12 hours. A method is proposed to apply a 48-hour ahead wind speed prediction by using the past wind speed measurements of the (Cesme Peninsula. We proposed to model wind speed data with a Polynomial AR (PAR) model. Coefficients of the models are estimated via linear Least Squares (LS) method and up to 48 hours ahead wind speed prediction is calculated for different models. In conclusion, a better performance is observed for higher than 12-hour ahead wind speed predictions of wind speed data which is modelled with PAR model, than AR and ARMA models. en_US
dc.description.sponsorship Dept Comp Engn & Elect & Elect Engn, Elect & Elect Engn, Bilkent Univ en_US
dc.identifier.isbn 978-1-4673-7386-9
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-84939176413
dc.identifier.uri https://hdl.handle.net/11147/9943
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedings en_US
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject AR en_US
dc.subject ARMA en_US
dc.subject PAR en_US
dc.subject nonlinear time series en_US
dc.subject long term wind speed prediction en_US
dc.title Long Term Wind Speed Prediction With Polynomial Autoregressive Model en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Karakuş, Oktay
gdc.author.institutional Altınkaya, Mustafa Aziz
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department İzmir Institute of Technology. Electrical and Electronics Engineering en_US
gdc.description.departmenttemp [Karakus, Oktay; Altinkaya, Mustafa A.] Izmir Yuksek Teknol Enstitusu, Elekt & Elekt Muhendisligi Bolumu, Izmir, Turkey; [Kuruoglu, Ercan E.] ISTI CNR, I-56124 Pisa, Italy en_US
gdc.description.endpage 648 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 645 en_US
gdc.description.wosquality N/A
gdc.identifier.wos WOS:000380500900140
gdc.scopus.citedcount 3
gdc.wos.citedcount 2
relation.isAuthorOfPublication f1af9899-f78f-4159-b057-398ddee3f8e1
relation.isAuthorOfPublication.latestForDiscovery f1af9899-f78f-4159-b057-398ddee3f8e1
relation.isOrgUnitOfPublication 9af2b05f-28ac-4018-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4018-8abe-a4dfe192da5e

Files