Making Hierarchically Aware Decisions on Short Findings for Automatic Summarisation

dc.contributor.author Inan, Emrah
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 03.04. Department of Computer Engineering
dc.date.accessioned 2025-09-25T18:52:29Z
dc.date.available 2025-09-25T18:52:29Z
dc.date.issued 2025
dc.description.abstract An impression in a typical radiology report emphasises critical information by providing a conclusion and reasoning based on the findings. However, the findings and impression sections of these reports generally contain brief texts, as they highlight crucial observations derived from the clinical radiograph. In this scenario, abstractive summarisation models often experience a degradation in performance when generating short impressions. To address this challenge in the summarisation task, our work proposes a method that combines well-known fine-tuned text classification and abstractive summarisation language models. Since fine-tuning a language model requires an extensive, well-defined training dataset and is a time-consuming task dependent on high GPU resources, we employ prompt engineering, which uses prompt templates to programme language models and improve their performance. Our method first predicts whether the given findings text is normal or abnormal by leveraging a fine-tuned language model. Then, we apply a radiology-specific BART model to generate the summary for abnormal findings. In the zero-shot setting, our method achieves remarkable results compared to existing approaches on a real-world dataset. In particular, our method achieves scores of 37.43 for ROUGE-1, 21.72 for ROUGE-2, and 35.52 for ROUGE-L. en_US
dc.identifier.doi 10.1016/j.jocs.2025.102692
dc.identifier.issn 1877-7503
dc.identifier.issn 1877-7511
dc.identifier.scopus 2-s2.0-105013638051
dc.identifier.uri https://doi.org/10.1016/j.jocs.2025.102692
dc.identifier.uri https://hdl.handle.net/11147/18421
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Journal of Computational Science en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Radiology Summarisation en_US
dc.subject Hierarchical Text Classification en_US
dc.subject Prompt Engineering en_US
dc.title Making Hierarchically Aware Decisions on Short Findings for Automatic Summarisation
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional İnan, Emrah
gdc.author.scopusid 55623306000
gdc.description.department İzmir Institute of Technology en_US
gdc.description.departmenttemp [Inan, Emrah] Izmir Inst Technol, Comp Engn, TR-35430 Izmir, Urla, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 91 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4413292019
gdc.identifier.wos WOS:001558893600001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 8d120978-d9da-42e0-8cb3-17b3fe8e3af1
relation.isAuthorOfPublication.latestForDiscovery 8d120978-d9da-42e0-8cb3-17b3fe8e3af1
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4014-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4003-8abe-a4dfe192da5e

Files